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ALGEBRAICNESS PROPERTIES ON TRANSITIVE BINARY RELATIONAL
SETS AND A CHARACTERIZATION OF CONTINUOUS DIRECTED

COMPLETE POSETS

MOHAMMED M. KHALAF∗ AND ESMAIL HASSAN ABDULLATIF AL-SABRI

ABSTRACT. In this work we introduce and study the concepts of algebraicness, and conti-
nuity on transitive binary relational sets ( so called TRS). Some interactions between these
concepts are investigated. Further more a characterization of continuous directed complete
posets and Algebraic TRS are studied. Our results are generalizations of corresponding
results in posets.

1. INTRODUCTION

It is interset to mention that in 1994 [1], S. Abramsky and A. Jung considered the concepts of
continuous directed complete posets (continuous domain) and algebraic domains. R. Hekmann con-
sidered and studies these concepts in detail in this paper [5]. Continuous posets were introduced and
studied independently by R. E. Hoffmann [ 2,6,7,8], J. D. Lawson [11,12] and in more fashion by
G. Markowsky [14] and M. Erne [3]. It is worth to mention that J. Nino-Salcedo, considered and
studied in moredetails the concepts of continuous posets and algebraic posets in this paper [15]. In
fact the concept of continuous poset ( resp., algebraic poset) in the sense of J. Nino-Salcedo [15] and
the concep of continuous. In [18], H. Zhang studied a type of continuous poset which is a gener-
alization of continuous poset in the sense of J. Nino-Salcedo [15]. In [5], the concepts of bounded
complete posets, bounded complete domains, finitely complete posets, finitely complete domains are
studied. It worth to mention that H. Zhang [18] studied some interactions between bounded complete
domains and scott-topology and lawson topology. Our aims here is devoted to introduce and study
the continuity and algebraicness properties of TRS. Our results extended the corresponding results
in posets and domains [5,9,15,18]. In section 2 we explain the concepts of a continuous TRS, the
relations between lower ( resp. upper) closure in X of A and when x below (resp. y is way above)
y (resp. x) directed subset of X.Also, prove that a if A TRS (X,≤) is continuous poset in the
sence of H. Zhang (resp., continuous poset in the sence of J. Nino-Salcedo, continuous domain in the
sence of R. Hekmann), then the way relation below ‘ ≪′is continuous information system, Finally
take about when the way relation below ‘ ≪′ is interpolative and a subset B of a poset (X,≤) is
called a base for X.In this section 3 we prove if TRS equivalent domain, i.e., a poset in which
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every directed subset has a supremum, then a continuous domain in the sence of in the sence of R.
Hekmann and continuous TRS are identical.

Definition 1.1. Let A ⊆ X. Then:
(1) A subset A of the domain [5] (resp. Poset ) X is called directed closed ( d-closed

for short) iff ∀ directed subset D of A,
∨
(D) ∈ A;

(2) A subset A of the Poset X is called Scott-closed iff A is d-closed lower subset of
X [15] ;

(3) A is called d-(resp. Scott-) open iff Ac d-(resp. Scott-) closed [5,15];
(4) Let x, y ∈ X. We say x below (resp. y is way above) y (resp. x), denoted by

x ≪ y iff ∀D ⊆ X, s.t. D is directed subset of X with
∨

D exists and y ≤
∨

D, ∃ d ∈
D s.t. x ≤ d. The family of all elements in X each of which way above (resp. way
below ) x is denoted and defined as follows: ⇑ x = {y ∈ X : x ≪ y} (resp. ⇓ x =
{y ∈ X : y ≪ x} [15];

(5) Let x ∈ X. If x ≪ x, then x is said to be isolated. The family of all isolated points
above (resp. below) x ∈ X is denoted and defined by: ↑◦ x = {y ∈ X : y ≪ y and x ≤ y} (resp.
↓◦ x = {y ∈ X : y ≪ y and y ≤ x} [15].

Proposition 1.1 ( Proposition 6.4.7 [5], Lemma 2.15(i)[16]) Let X be a continuous do-
main, then for every two points x, z ∈ X with x ≪ z there is a point y ∈ X s.t.,
x ≪ y ≪ z.

Proposition 1.2 (Proposition 1.17 [18]). Let X be a continuous poset in the sence of
Zhang, then for every two points x, z ∈ X with x ≪ z there is a point y ∈ X s.t.,
x ≪ y ≪ z.

Proposition 1.3 (Proposition 6.7.2 [5] and Lemma 2.14[15]) If (X, ≤) is continuous domain in
the sence of R. Hekmann iff X is a continuous poset in the sence of J. Nino-Salcedo.

Proposition 1.4 (Proposition 6.2.2 [5]) A domain X is an algebraic in the sence of R.
Hekmann iff it is algebraic poset in the sence of J. Nino-Salcedo.

Theorem 1.1 (Proposition 6.7.3 [5]). If X is an algebraic domain then, it is a continuous domain.

Definition 1.2. Let A ⊆ X. Then:
(1) A is called directed subset of X iff A ̸= ϕ and ∀ x, y ∈ A, ∃ z ∈ A s.t. x ≤

z and y ≤ z [5];
(2) The lower ( resp. upper) closure in X of A is denoted by ↓ A (resp. ↑ A ) and defined

as follows: ↓ A = {x ∈ X : ∃ y ∈ A s.t. x ≤ y }( resp. ↑ A = {x ∈ X : ∃ y ∈ A s.t. y ≤ x })[5]
(3) The convex hull A is denoted by ↕ A and defined as follows: ↕ A = ↓ A ∩ ↑

A [5];
(4) Let A,B ⊆ X. B is called cofinal in A iff B ⊆ A ⊆ ↓ (B)[5].

Definition 1.3. Let ‘ ≤′ be a binary relation set on X ̸= ϕ. Then;
(1) ‘ ≤′ is called reflexive iff ∀ x ∈ X, x ≤ x [13];
(2) ‘ ≤′ is called antisymetric iff ∀ x, y ∈ X, x ≤ y and y ≤ x ⇒ x = y [13];
(3) ‘ ≤′ is called transitive iff ∀ x, y, z ∈ X, x ≤ y and y ≤ z ⇒ x = z[13];
(4) ‘ ≤′ is called symetric iff ∀ x, y ∈ X, x ≤ y ⇒ y ≤ x [13];
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(5) ‘ ≤′ is called interpolative iff ∀ x, z ∈ X, with x ≤ z, ∃ y ∈ X s.t. x ≤ y ≤
z [5, 16].

(6) if ‘ ≤′satisfies the conditions (1), (2) and (3), then (X,≤) is called Partialy order
set (Poset) [13];

(7) if ‘ ≤′satisfies the conditions (1), and (3), then (X,≤) is called pre-orderd set
(Quasi set)[13];

(8) if ‘ ≤′satisfies the conditions (1), (2), (3) and (4), then (X,≤) is called an equva-
lence set,

(9) if ‘ ≤′satisfies the conditions (3) and (5), then (X,≤) is a continuous information
system [10,16].

(10) if ‘ ≤′satisfies the conditions (3), and ∀ x ∈ X, and for every finite subset
A of X the following axiom holds: if ∀ y ∈ A, y ≤ x then ∃ z ∈ X s.t. ∀ y ∈ A, y ≤ z
and z ≤ x, then (X,≤) is abstract basis [17].

2. Continuous TRS

Here in this section explain the concepts of a continuous TRS, the relations between lower ( resp.
upper) closure in X of A and when x below (resp. y is way above) y (resp. x), directed subset
of X.Also, prove that a if A TRS (X,≤) is continuous poset in the sence of H. Zhang (resp.,
continuous poset in the sence of J. Nino-Salcedo, continuous domain in the sence of R. Hekmann),
then the way relation below ‘ ≪′is continuous information system, Finally take about when the way
relation below ‘ ≪′ is interpolative and a subset B of a poset (X,≤) is called a base for X.

Definition 2.1. A TRS (X, ≤) is continuous TRS iff ∀ x ∈ X, the following conditions
are satisfied:

(1)
∨
({x}) ̸= ϕ

(2) ⇓ x be a directed subset of X , and
(3) x ∈ ↓ (

∨
(
⋃
{
∨

(⇓ a) : a ∈ ⇓ x})).

Theorem 2.1. Let (X, ≤) be a TRS. let x, y, z ∈ X. Then :

(1) If x ≤ y and y ≪ z, then x ≪ z;
(2) If x ≪ y and y ≤ z, then x ≪ z;
(3) If

∨
({y}) ̸= ϕ. and x ≪ y, then x ≤ y;

(4) If
∨
({y}) ̸= ϕ. or

∨
({z}) ̸= ϕ, x ≪ y and y ≪ z, then x ≪ z.

Proof (1) Let D be a directed subset of X s.t. z ∈ ↓
∨
(D). Then ∃ d ∈ D s.t. y ≤

d.Then x ≤ d and hence x ≪ z.
(2) Let D be a directed subset of X s.t. z ∈ ↓

∨
(D). Then ∃ k ∈

∨
(D) s.t. z ≤

k.Thus y ≤ k and so y ∈ ↓
∨
(D). Therefore ∃ l ∈ D s.t. x ≤ l. hence x ≪ z.

(3) Let D = {y} and assume that x ≪ y. Then ∃ d ∈ D s.t. x ≤ d but y = d. Thus
x ≤ y;

(4) The proof follow directly From (1) and (3) above.

Lemma 2.1 Let (X, ≤) be a TRS, let ⇓ x be a directed subset of ∀ x ∈ X . Then
∀ z ∈ X, D =

⋃
{⇓ a : a ∈ ⇓ z} is called directed subset.
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Proof Let λ, µ ∈ D s.t., λ ̸= µ. Then a1, a2 ∈ ⇓ z s.t., λ ∈ ⇓ a1 and µ ∈ ⇓ a2. If
a1 = a2, the result hlolds. the otherwise let a ∈ ub({a1, a2})∩ ⇓ z so that Theorem
2.1 (2). λ, µ ∈ ⇓ a. Since ⇓ a is called directed subset, then ∃ρ ∈ ub({λ, µ})∩ ⇓ a ⊆
ub({λ, µ}) ∩ D. Thus D is called directed subset.

Lemma 2.2. Let (X, ≤) be a TRS, let ∀ x ∈ X . Then ∀ x ∈ X, ub(
⋃
{⇓ a : a ∈ ⇓

x) = ub(
⋃
{
∨
(⇓ a) : a ∈ ⇓ x). Thus

∨
(
⋃
{(⇓ a) : a ∈ ⇓ x) =

∨
(
⋃
{
∨
(⇓ a) : a ∈ ⇓

x).

Proof.
λ ∈ ub(

⋃
{(⇓ a) : a ∈ ⇓ x) ⇔ ∀µ ∈

⋃
{(⇓ a) : a ∈ ⇓ x},

λ ≥ µ ⇔ ∀µ ∈ (⇓ a), a ∈ (⇓ x),
λ ≥ µ ⇔ ∀ρ ∈

∨
(⇓ a), a ∈ (⇓ x),

λ ≥ ρ ⇔ λ ∈ ub(
⋃∨

(⇓ a) : a ∈ ⇓ x).

The following theorem is a generalization of the corresponding result in Proposition 1.1
and Proposition 1.2 (Proposition 6.4.7 [5], Lemma 2.15(i)[16] and Proposition 1.17 [18]) .

Theorem 2.2. If (X, ≤) is continuous TRS, then the way relation below ‘ ≪′is inter-
polative, i.e., ∀ x, z ∈ X, with x ≤ z, implies that ∃ y ∈ X s.t. x ≪ y ≪ z.

Proof. From Lemma 2.1 and 2.2, z ∈ ↓ (
∨
(
⋃
{⇓ y : y ∈ ⇓ z)) and

⋃
{⇓ y : y ∈ ⇓ z) is

directed. Then ∃ d ∈ ⇓ y for some y ∈ ⇓ z s.t., x ≤ d. From Theorem 2.1.(1), we have
x ≪ y. Hence x ≪ y ≪ z.

Theorem 2.3. If (X, ≤) is continuous TRS, then the way relation below ‘ ≪′is contin-
uous information system.

Proof. From Theorem 2.1.(4). and Theorem 2.2.

Corollary 2.1 If (X, ≤) is continuous poset in the sence of H. Zhang (resp., continuous
poset in the sence of J. Nino-Salcedo, continuous domain in the sence of R. Hekmann),
then the way relation below ‘ ≪′is continuous information system.

Lemma 2.3. For any (X, ≤) TRS. if ∀ x ∈ X,
∨
({x}) ̸= ϕ, and the way relation

below ‘ ≪′ is interpolative, then ∀ x ∈ X, ⇓ x =
⋃
{⇓ a : a ∈ ⇓ x} .

Proof Let z ∈
⋃
{⇓ a : a ∈ ⇓ x} . Then ∃ a ∈ ⇓ x s.t., z ≪ a. From From Theorem

2.1.(4), z ≪ x, i.e., z ∈ ⇓ x. Second, let z ∈ ⇓ x. Then z ≪ x. Since ‘ ≪′ is
interpolative, ∃ a ∈ X s.t., z ≪ a ≪ x, i.e., z ∈

⋃
{⇓ a : a ∈ ⇓ x} .

Applying Lemma 2.3., Theorem 2.2. and Theorem 2.3. one have the following theo-
rem.

Theorem 2.4. A TRS (X, ≤) is continuous iff the following conditions are satisfied:
(1) The way relation below ‘ ≪′ is interpolative
(2) ∀ x ∈ X,

∨
({x}) ̸= ϕ;

(3) ∀ x ∈ X, ⇓ x is directed ;
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(4) ∀ x ∈ X, x ∈ ↓
∨
(⇓ x).

Proof First of all, we note that conditions (2) and (3) above are common.
=⇒ : From Theorem 2.2., ‘ ≪′ is interpolative so that conditions (1) above is satisfied.

From Lemma 2.3., conditions (4) above is satisfied.
⇐= : From Lemma 2.3., one can have that conditions (3) in Definition 2.1

Corollary 2.2 A TRS (X, ≤) is continuous domain in the sence of R. Hekmann (resp.,
continuous poset in the sence of H. Zhang), if the following conditions are satisfied:

(1) The way relation below ‘ ≪′ is interpolative
(2) ∀ x ∈ X, ⇓ x is directed ;
(3) ∀ x ∈ X, x ∈ ↓

∨
(⇓ x).

Proposition 2.1. Let λ, µ ∈ X. If µ directed subset and cofinal in λ, then λ is directed
subset and

∨
(λ) =

∨
(µ).

Theorem 2.5.A TRS (X, ≤) is continuous if the following conditions are satisfied:
(1) The way relation below ‘ ≪′ is interpolative
(2) ∀ x ∈ X,

∨
({x}) ̸= ϕ;

(3) ∀ x ∈ X, ∃ a directed subset D of ⇓ x s.t., x ∈ ↓ (
∨
(D)).

Proof =⇒ : From Theorem 2.4., conditions (1) and (2) are satisfied. The condition (3) is
satisfied if we put D = ⇓ x.

⇐= : Now conditions (1) and (2) are satisfied in Theorem 2.4. are given above. We
need to prove that D is cofinal in ⇓ x. First D ⊆ ⇓ x and D is directed . Second, let
y ∈ ⇓ x. Since x ∈ ↓ (

∨
(D)), then ∃ d ∈ D s.t., y ≤ d. So, y ∈ ↓ (D). Then from

Proposition 2.1, ⇓ x is directed and
∨
( ⇓ x) =

∨
(D). Hence conditions (3) and (4) in

Theorem 2.4. are satisfied.

Corollary 2.3 A TRS (X, ≤) is continuous domain in the sence of R. Hekmann (resp.,
continuous poset in the sence of H. Zhang), if the following conditions are satisfied:

(1) The way relation below ‘ ≪′ is interpolative
(2) ∀ x ∈ X, ∃ a directed subset D of ⇓ x s.t., x = ↓ (

∨
(D)).

The following theorem is a generalization of the corresponding result in Proposition 1.3
(Proposition 6.7.2 [5] and Lemma 2.14[15]).

Theorem 2.6.A TRS (X, ≤) is continuous if the following conditions are satisfied:
(1) ∀ x ∈ X,

∨
({x}) ̸= ϕ;

(2) ∀ x ∈ X, ∃ a directed subset D of
⋃

{⇓ a : a ∈ ⇓ x} . s.t., x ∈ ↓ (
∨
(D)).

Proof =⇒ : From Theorem 2.5., and Lemma 2.3. on can have that ⇓ x =
⋃

{⇓ a : a ∈ ⇓ x} so
that from conditions (3) in Theorem 2.5 on have directly conditions (2) in above.

⇐= : Since D is cofinal in
⋃
{⇓ a : a ∈ ⇓ x} ( Indeed, D ⊆

⋃
{⇓ a : a ∈ ⇓ x} let

z ∈
⋃
{⇓ a : a ∈ ⇓ x} . z ≪ a from some a ∈ ⇓ x so that from From Theorem

2.1.(4).z ≪ x Since D is directed and x ∈ ↓ (
∨
(D)), then ∃ d ∈ D s.t., z ≤

d. i.e.,, z ∈ ↓ (D).), then from Proposition 2.1,
⋃
{⇓ a : a ∈ ⇓ x} is directed and∨

(D) =
∨
(
⋃
{⇓ a : a ∈ ⇓ x}). Hence conditions (3) in Theorem 2.5 is satisfied. Also,



62 MOHAMMED M. KHALAF AND ESMAIL HASSAN ABDULLATIF AL-SABRI

one can prove that ‘ ≪′ is interpolative ( Indeed, x ≪ z and from conditions (2) above
z ∈ ↓ (

∨
(
⋃
{⇓ a : a ∈ ⇓ x})). Thus ∃ d ∈

⋃
{⇓ a : a ∈ ⇓ x} s.t., x ≤ d ≪ a ≪

z. .So, From From Theorem 2.1.(1), x ≪ a. Then x ≪ a ≪ z.). Then conditions (2) in
Theorem 2.5 is satisfied. Hence A TRS (X, ≤) is continuous.

Corollary 2.4 A TRS (X, ≤) is continuous poset in the sence of in the sence of H.
Zhang iff ∀ x ∈ X, ∃ directed subset D of

⋃
{⇓ a : a ∈ ⇓ x} s.t., x =

∨
(D).

Definition 2.2. A subset B of X is called a base for X if the following conditions are
satisfied:

1) ∀ x ∈ X,
∨
({x}) ̸= ϕ;

(2) ∀ x ∈ X, ∃ a directed subset D of B s.t., D ⊆
⋃

{⇓ a : a ∈ ⇓ x} . and x ∈ ↓
(
∨
(D))

Theorem 2.7.A TRS (X, ≤) is continuous iff it has a base.

Proof =⇒ : From Theorem 2.6, B =
⋃

x∈X(
⋃
{⇓ a : a ∈ ⇓ x} ;

⇐= : Conditions (2) in Theorem 2.6 is satisfied directly from the definition of the base
of a A TRS (X, ≤).

Corollary 2.5 Let TRS (X, ≤) be a domain. X is a continuous domain in the sence of
in the sence of R. Hekmann (continuous poset in the sence of J. Nino-Salcedo,)

Definition 2.3. A subset B of a poset (X, ≤) is called a base for X iff ∀ x ∈ X, ∃ a
directed subset D of

⋃
{⇓ a : a ∈ ⇓ x} . s.t.,

∨
(D) exists and x =

∨
(D).

Corollary 2.6 A poset (X, ≤) is a continuous domain in the sence of in the sence of H.
Zhang iff it has a base ( as in Definition 2.3.).

3. A characterization of continuous directed complete posets and Algebraic
TRS.

In this section we prove if TRS ⇐⇒ domain, i.e., a poset in which every directed
subset has a supremum, then a continuous domain in the sence of in the sence of R.
Hekmann and continuous TRS are identical.

Theorem 3.1. Let (X, ≤) be a TRS. let x, y, z ∈ X. Then :

(1) If x ≤ y and y ≪ z, then x ≪ z;
(2) If x ≪ y and y ≤ z, then x ≪ z;
(3) If

∨
({y}) ̸= ϕ. and x ≪ y, then x ≤ y;

(4) If
∨
({y}) ̸= ϕ. or

∨
({z}) ̸= ϕ, x ≪ y and y ≪ z, then x ≪ z.

Proof (1) Let D be a directed subset of X s.t. z ∈ ↓
∨
(D). Then ∃ d ∈ D s.t. y ≤

d.Then x ≤ d and hence x ≪ z.
(2) Let D be a directed subset of X s.t. z ∈ ↓

∨
(D). Then ∃ k ∈

∨
(D) s.t. z ≤

k.Thus y ≤ k and so y ∈ ↓
∨
(D). Therefore ∃ l ∈ D s.t. x ≤ l. hence x ≪ z.
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(3) Let D = {y} and assume that x ≪ y. Then ∃ d ∈ D s.t. x ≤ d but y = d. Thus
x ≤ y;

(4) The proof follow directly From (1) and (3) above.

Lemma 3.1 If (X, ≤) is a continuous TRS and ‘ ≤′is antisymmetric, then:

(1) The supremum of any set is unique whenever it exist; and
(2) ∀ x ∈ X, x =

∨
((⇓ x)).

Proof (1) Obvious;
(2) From Theorem 2.4(4), x ∈ ↓ (

∨
(⇓ x)). so that x ≤

∨
({⇓ x}). Conversely,

∀ λ ∈ (⇓ x), λ ≪ x. From Theorem 3.1(3), ∀ λ ∈ (⇓ x), λ ≤ x so that
∨
((⇓ x)) ≤ x

Lemma 3.2 If TRS (X, ≤) is a continuous and if ‘ ≤′is reflexive, then a subset D of
X is a directed subset iff ∀ x, y ∈ D, ∃ z ∈ ub({x, y}) ∩D.

Proof =⇒ :Let {x, y}) ⊆ D s.t., x = y. Since ‘ ≤′is reflexive, then x ∈ ub({x, y})∩D,
⇐= : Obvious.

Theorem 3.2. Let A TRS (X, ≤) is a continuous domain in the sence of in the sence
of R. Hekmann ( continuous poset in the sence of J. Nino-Salcedo,) iff A TRS (X, ≤) is
a continuous domain with ‘ ≤′is reflexive and antisymmetric.

Proof From Lemma 3.1, Lemma 3.2 and Definition 2.1. the proof is obtained.

Definition 3.1.A TRS (X, ≤) is algebraic iff the following conditions are satisfied:
(1) ∀ x ∈ X, ↓◦ x is directed subset of X , and
(2) ∀ x ∈ X, x ∈ ↓ (

∨
(↓◦ x))

Theorem 3.3. If a TRS (X, ≤) is algebraic, then ‘ ≤′is interpolative.

Proof Let x, z ∈ X s.t., x ≪ z. Then condition (2) above implies that from fact z ∈ ↓
(
∨
(↓◦ z)), ∃ l ∈ ↓◦ z s.t., x ≤ l. Since l ≪ l and x ≤ l, then from From Theorem

3.1(1), (2), ∃ l ∈ X s.t., x ≪ l ≪ z.

Theorem 3.4. If a TRS (X, ≤) is algebraic, then (X, ≪) is continuous information
system.

Proof Applying Theorem 3.3, it rests to prove that ‘ ≪′is transitive. Let x, y, z ∈ X s.t.,
x ≪ y and y ≪ z. Since y ≪ z and z ∈ ↓ (

∨
(↓◦ z)), then ∃ l ∈ ↓◦ z s.t., y ≪ l. Since

l ∈ (↓◦ z) then l ≤ z so that y ≤ z. Now, x ≪ y and y ≤ z, then from From Theorem
3.1(2), we have that x ≪ z.

Remark3.1. In from Theorem 3.1(4), we need the property that ∀ x ∈ X,
∨
({x}) ̸= ϕ, to

prove that ‘ ≪′is transitive for a continuous.TRS but as we illustrate in the proof of
Theorem 3.4 we do not need this property to prove that ‘ ≪′is transitive for an a TRS
algebraic.
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Corollary 3.1 If a TRS (X, ≤) is algebraic domain in the sence of in the sence of
R. Hekmann ( resp., algebraic domain in the sence of J. Nino-Salcedo,), then (X, ≪) is
continuous information system.

The following theorem is a generalization of the corresponding result in Proposition 1.4
(Proposition 6.2.2 [5]).

Theorem 3.4. A TRS (X, ≤) is algebraic, iff ∀ x ∈ X, ∃ a directed subset D of
↓◦ x s.t., x ∈ ↓ (

∨
(D)).

Proof ⇐= :∀ x ∈ X, take D = ↓◦ x . Then the result holds.
=⇒ : Let x ∈ X. We need to prove that D is cofinal in ↓◦ x. Now , D ⊆ ↓◦ x. Let z

∈ ↓◦ x. So that from Theorem 3.1(2) z ≪ x. Since x ∈ ↓ (
∨
(D)), ∃ d ∈ D s.t., z ≤ d.

Thus z ∈ ↓ D. Hence from Proposition 2.1the result holds..

Theorem 3.5. A TRS (X, ≤) is algebraic, then
(1) x ≤ y ⇒ ↓◦ x ⊆ ↓◦ y
(2) ↓◦ x ⊆ ↓◦ y ⇒ ∀ z ∈ (

∨
(↓◦ y)), x ≤ z.

Proof (1) Let x ≤ y and let z ∈ ↓◦ x. Then z ≪ z and z ≤ x so that z ≪ z and
z ≤ y so that z ∈ ↓◦ y

(2) Suppose ↓◦ x ⊆ ↓◦ y. Then ∀ l ∈ (
∨
(↓◦ x)), ∀ z ∈ (

∨
(↓◦ y)), l ≤ z. Sincex ∈

(
∨
(↓◦ x)), then ∃ l◦ ∈ (

∨
(↓◦ x)) s.t., x ∈ l◦. So, ∀ z ∈ (

∨
(↓◦ y)), x ≤ z.

Corollary 3.2 If a TRS (X, ≤) is algebraic domain and ‘ ≤′ is antisymmetric, then
x ≤ y iff ↓◦ x ⊆ ↓◦ y.

Proof ⇐= : Since ‘ ≤′ is antisymmetric and X is domain , then
∨
(↓◦ y) exists and unique,

say equal z. Since X is algebraic, then z = y. Thus from Theorem 3.5 (2), the results
holds.

=⇒ : It follows fr (1) in Theorem 3.5.
The corollary 3.2 is a generalization of the corresponding result in Proposition 6.2.3 [5]

since the reflexivity of ′ ≤′ is not assumed.
Theorem 3.6. If TRS (X, ≤) is algebraic, then:

∀ x ∈ X, ∃ a directed subset D of ⇓ x s.t., x ∈ ↓ (
∨
(D)).

Proof If we prove that ∀x ∈ X, ↓◦ x ⊆ ⇓ x. The result holds. So let z ∈ ↓◦ x. Then
z ≪ z and z ≤ x. Then from Theorem 3.1 (2), z ∈ ⇓ x.

The Theorem 3.6 is a generalization of the corresponding result in Theorem 1.1 (Propo-
sition 6.7.3 [5]).
Corollary 3.3 If a TRS (X, ≤) is algebraic and ∀x ∈ X,

∨
({x}) ̸= ϕ, then (X, ≤) is

continuous

Definition 3.2.In TRS (X, ≤), ∀ x ∈ X, x ≪ x, then x is said to be isolated and we
can write x ∈ K(X).

Theorem 3.7. For TRS (X, ≤) assume that the following conditions are satisfied:
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(1) ∀ x ∈ X, ⇓ x is directed subset ;
(2) ∀ x ∈ X, x ∈ ↓ (

∨
(⇓ x));

(3) ∀ x ∈ X, x ≪ y, ∃ k ∈ K(X) s.t., x ≤ k ≤ y. Then (X, ≤) is algebraic.

Proof We need to prove that ∀ x ∈ X, ↓◦ x is cofinal in ⇓ x. Let z ∈ ↓◦ x. Then
z ≪ z and z ≤ x. from Theorem 3.1 (2) z ≪ x, i.e., z ∈ ⇓ x. Hence ↓◦ x ⊆ ⇓ x. Let
l ∈ ⇓ x. So l ≤ x. Thus ∃ k ∈ K(X) with l ≤ k ≤ x. from Theorem 3.1 (2), one can
deduce that k ∈ ↓◦ x. Hence l ∈ ↓ (↓◦ x). Then Proposition 2.1, ↓◦ x is directed and∨
(⇓ x) =

∨
(↓◦ x).
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