
ANNALS OF COMMUNICATIONS IN MATHEMATICS

Volume 6, Number 1 (2023), 44-56
ISSN: 2582-0818
© http://www.technoskypub.com

AN EXTENSION OF FERMATEAN B-DERIVED FUZZY SOFT TERNARY
SUBGROUP

S.V. MANEMARAN∗, R. NAGARAJAN AND P. JAYARAMAN

ABSTRACT. In this paper, an extension of the fermatean uncertainty soft subgroup struc-
tures under a norm. Also, the cubic fermatean uncertainty soft ideal structures and fer-
matean uncertainty multigroup over multi-homomorphism are discussed in detail.

1. INTRODUCTION

The idea of fuzzy uncertainty as a major role occurs in all fields of science and engineer-
ing domains and it was initially developed by Zadeh [17]. Many scientists concentrated the
fuzzy uncertainty to predict the fuzzified solution of the applications. The idea of fuzzi-
fication in group into uncertainty subgroup is introduced by Rosenfeld [14]. This is the
first uncertainty filation of any quantity of algorithmic structures and newly expressed in
another dimension in the different fields of science and engineering. The uncertainty is
initially discussed through the n-ary systems by Kasner [7] and Dudek [2]. Furthermore,
extension of this uncertainty on n-ary groups introduced by Dornte [6]. The uncertainty
of n-ary groups as a generalization of uncertainty subgroup discussed by Davvz in [5].
Atanassov [1] introduced the axioms of set properties with notations in uncertainty sets.
Dudek [3] has established the axioms of set properties along with basic notations using n-
ary systems. Investigate of uncertainty n-ary subgroups introduced by [2]. The fermatean
uncertainty sets was initially introduced by Senapathi and Yager [15]. D. Molodtsov’s in-
troduced the concept of soft sets in [11]. Followed by, the cubic fermatean uncertainty
soft ideal structures, defining basic notions in soft sets along with suitable applications
were presented in [8]. R.Nagarajan studied fermatean uncertainty multi-group over multi-
homomorphism [12]. In this paper, an extension of the fermatean uncertainty soft sub-
group structures under a norm. Also, the cubic fermatean uncertainty soft ideal structures
and fermatean uncertainty multi-group over multi-homomorphism are discussed in detail.
The rest of the article is structured as follows: Section 2 explained the preliminaries related
to the present study. Section 3 presented an extension fermatean uncertainty under normal
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subgroups such important theoretical proofs, corollaries and numerical examples related to
these results. Conclusions and future research directions are presented in Section 4.

2. PRELIMINARIES

Let G be a non-empty set. Define (G, ρ) be an n-dimensional groupoid as a mapping
ρ : Gn → G, n ≥ 2. Let yi, yi+1, yi+2, yi+3 . . . yj be the sequence of elements in n-
dimensional groupoids denoted by yij is a set of symbols yi = yi+1 = yi+2 = yi+3 · · · =
y commonly denoted by yt. Mathematically, we write ρ(y1, y2, . . . , yn) = ρ(yn1 ) and
ρ(y1, y2, . . . , yi, . . . , yn, . . . , y(i+t+1), . . . , yn) = ρ(yt1, . . . , y

t
2, . . . , y

n
(i+t+1)).

For any y1, y2, . . . , yn−2 ∈ G then n-dimensional groupied (G, ρ) is called (i, j) asso-
ciative if it satisfies ρ(yi−1

i ), ρ
(n+i−1)
i , y

(2n−1)
(n+1) = ρ(y(j−1)i , ρ(y

(n+j−1)
j , y(n+j)(2n−1)).

For all the above operation is associative then (G, ρ) is said to be an n-dimensional semi
group. Moreover, the n-dimensional groupoid satisfies associative condition if and only if
it is called (i, j) - associative for allj = 2, 3, . . . , n. In binary case, the value of n=2 is
called usual semi group. y0, y1, y2, y3 . . . yn ∈ G with an integer i ∈ {1, 2, 3, . . . n}, there
exists an object z ∈ G such that

ρ(y
(i−1)
i , z, . . . , yn(i+1)) = y0 (2.1)

The above Eqn. (1) is known as i-solvable or solvable at the place ‘i’. If the solution is
unique then Eqn. (2.1) is uniquely i-solvable.
For, i = 1, 2, 3, . . . , n an n-dimensional groupoid (G, ρ) is uniquely solvable then it is
called an n-dimensional quasigroup. An n-dimensional quasigroup satisfies the associative
property then it is called n-dimensional group. For n ≥ 3 the element in an n-dimensional
operation ρ defines binary operation y • x = ρ(y, cn−2

2 ). If(G, ρ) is an n-dimensional
group the (G, •) is a group. Followed by the nature of different groups were obtained
based on the element cn−2

2 . In all cases, these groups are isomorphic to each other [4]. So,
we can consider only the groups of the form retc(G, ρ) = (G, •) satisfies the operation
y • x = ρ(y, cn−2

2 , x). In this group, take e = c. Then yt = ρ(c, cn−3, y, c). Dudek
and Michalski et. al [4] proved the result is as follows: For the elements a, yn1 ∈ G in an
n-dimensional group(G, ρ) there exists a group (G, •) with automorphism satisfies

ρ(yni ) = y1 • ϕ(x2) • ϕ2(x2) • ϕ3(x3) • ϕ(n−1)(xn) • a (2.2)

Senapati et. al [15] Let X be a universe of discourse. The operation F in X is a
fermatean uncertainty set (FUS) defined by F = {⟨x,mF (x), nF (x)⟩ /x ∈ X} with cor-
responding membership functions mF (x) : X → [0, 1] and nF (x) : X → [−1, 0] satisfies
0 ≤ (mF (x))

3 + (nF (x))
3 ≤ 1 ∀x ∈ X. Here in, mF (x),mF (x) denotes the degree of

membership and non-membership of an element x ∈ F .

Senapati et. al [15] For any FUS, the elements x, F ∈ X the degree of an indetermi-
nacy is given by ΠF (x) = 3

√
1− (mF (x))3 − (nF (x))3. The ordered pair of the mem-

bership functions (mF (x),mF (x)) is the fermatean uncertainty number (FUN) denoted
by (mF , nF ).

Senapati and Yager et. al [15] The degree of the set of fuzzy membership functions are
more than the degrees of both set of Pythagorean membership grades and bi-uncertainty
membership grades. These membership grades are graphically plotted in Figure 2. In Fig-
ure 1, the set of points on the line x+ y ≤ 1 shows the bi-uncertainty membership values.
Moreover, the set of points that covers from the line x+y ≤ 1above to atmost x2+y2 ≤ 1
shows the degree of Pythagorean membership values.
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FIGURE 1. Fermatean membership grade

Davvaz et. al [5] An extension uncertainty subgroup (EUSG) in an n-dimensional group
on (G, ρ) satisfies following axioms
[EUSG1] : For all yn1 ∈ G,µ(ρyn1 ) ≥ min{µy1, µy2, . . . , µy1}
[EUSG2] : For all yn1 ∈ G,µ(y01) ≥ µ(y)

For every y ∈ G , there exists a natural number P such that y−(p) = y where y−(p)

indicates the skew elementsy−(p−1) and y−(0) Dudek et.al: describes an uncertainty over
n-dimensional subgroups satisfies µ(y) > µ(y) ∀y ∈ G. Followed by the above back-
grounds scope of the study, we discussed the theorems in Fermatean uncertainty of normal
subgroups with suitable numerical examples.

3. EXTENSION FERMATEAN UNCERTAINTY OF NORMAL SUBGROUPS

In this section, an extension fermatean uncertainty (T, S) normal subgroup with related
theorems, corollary with suitable examples are discussed in detail.

Definition 3.1. A collection of Fermatean uncertainty A = (m3
A, n

3
A) in G is said to be an

extension fermatean uncertainty (T, S) under normal subgroup of satisfies the following
axioms:
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FIGURE 2. Types of membership functions

EFUSG1 : For all yn1 ∈ G ⇒ (m3
A(ρ(y

n
1 )) ≥ T{m3

A(y1), ...,m
3
A(yn)})

EFUSG2 : For all yn1 ∈ G ⇒ (n3
A(ρ(y

n
1 )) ≤ S{n3

A(y1), ..., n
3
A(yn)})

EFUSG3 : For all y1 ∈ G ⇒ (m3
A(y) ≥ m3

A(y))

EFUSG3 : For all y1 ∈ G ⇒ (m3
A(y) ≤ m3

A(y))

EUSG2 : For all yn1 ∈ G ⇒ µ(ȳ) ≥ µ(y)

Example 3.2. Let (Z4, ρ) be an extension Fermatean uncertainty subgroup. Define a map-
ping ρ : Z4

4 → Z4 defined by ρ(y1, y2, y3, y4) = S(y1, y2, y3, y4).
Consider, (Z4, ρ) is a 4-dimensional additive subgroup of an integer modulo 4.
Let A = (m3

A, n
3
A) be the fermatean uncertainty collection in (Z4, ρ) given by

m3
A =

{
0.8, if y = 0

0.3, if y = 1, 2, 3
and n3

A =

{
0.3, if y = 0

0.8, if y = 1, 2, 3.

The above fermatean uncertainty collection A = (m3
A, n

3
A) satisfies an extension fer-

matean uncertainty subgroup of (Z4, ρ).

Theorem 3.1. If {Ai/i ∈ I} is an arbitrary family of an extension fermatean uncer-
tainty subgroup of (G, ρ) then

⋂
Ai is also an extension fermatean uncertainty subgroup

of (G, ρ) given by ⋂
Ai = {y,

(
∧m3

A(y),∨n3
A(y)

)
/y ∈ G}.

Proof. According to Definition 3.1: the proof of this theorem obviously satisfied. □
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Theorem 3.2. If A = (m3
A, n

3
A) be a collection of fermatean uncertainty in G is an exten-

sion fermatean uncertainty subgroup of (G, ρ) with operation ♢ satisfies A = {y, (m3
A(y)),

1− n3
A(y))/y ∈ G}.

Proof. From Definition 3.1 : the membership function m̄A satisfies the axioms EFUSG2

and EFUSG4.

Let yn1 ∈ G then the membership function can be written as

m̄3
A(ρ(y

n
1 )) = 1−m3

A(ρ(y
n
1 ))

≤ 1− T{m3
A(y1), ...,m

3
A(yn)}

= S{m3
A(y1),m

3
A(y2), ...,m

3
A(y1−n)}

And

m̄3
A(ȳ) = 1−m3

A(y) ≤ 1−m3
A(y) = m3

A(ȳ)

Hence, the notion ♢A is an extension of fermatean uncertainty of G, ρ. □

Definition 3.3. Let A = (m3
A, n

3
A) be a fermatean uncertainty collection in G.

Let k ∈ [0, 1] with the bounds of membership function on G is defined by

U(m3
A; k) = {y ∈ G/m3

A(y) ≥ k},
L(n3

A; k) = {y ∈ G/n3
A(y) ≤ k}

Here in, the symbol m3
A and n3

A denotes the levelk − cut in G.
The consequence of the following theorems to be proved based on the results discussed in
Dudek.

Theorem 3.3. Let A be the fermatean uncertainty collection in G with the image
Im(m3

A) = {ki/i ∈ I} and Im(n3
A) = kj/j ∈ I is also an extension fermatean uncer-

tainty subgroup of (G, ρ). If and only if the m3
A-level k-cut and n3

A-level k-cut of G are
k ∈ Im(m3

A)∩ Im(n3
A), which are known as m3

A-level extension subgroups and n3
A-level

extension subgroups respectively.

Proof. Let A be an extension fermatean uncertainty subgroup of (G, ρ). If y1 ∈ G and
k ∈ [0, 1], then m3

A(y1) ≥ k for all i = 1, 2, 3..., n thus

m3
A(ρ(y

n
1 )) ≥ T{m3

A(y1), ...,m
3
A(yn)} ≥ k

this implies (ρ(yn1 )) ∈ U(m3
A; k) and (ρ(yn1 )) ∈ U(m3

A; k) and

n3
A(ρ(y

n
1 )) ≤ Sn3

A(y1), ...,m
3
A(yn) ≤ k

implies (ρ(y21)) ∈ L(n3
A; k).

Moreover, for somey ∈ U(m3
A; k) and y ∈ L(n3

A; k) we have

m3
A(ȳ1) ≥ m3

A(y1) ≥ k and n3
A(ȳ1) ≤ n3

A(y1) ≤ k

implies y ∈ U(m3
A; k)andy ∈ L(n3

A; k).

Thus, m3
A-level k-cut and n3

A-level k-cut are also an extension subgroup of (G, ρ).
Conversely, assume that both m3

A-level k-cut and n3
A-level k-cut are extension subgroup
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of (G, ρ).

Define 1

k0 = T{m3
A(y1), ...,m

3
A(yn)} and k1 = T{n3

A(y1), ..., n
3
A(yn)}

For some yn1 ∈ G then yn1 ∈ U(m3
A; k0) and yn1 ∈ L(n3

A; k0)

Consequently ρ(yn1 ) ∈ U(m3
A; k0) and ρ(yn1 ) ∈ L(n3

A; k0)

Thus, m3
A(ρ(y

n
1 )) ≥ k0 = Tm3

A(y1), ...,m
3
A(yn)

n3
A(ρ(y

n
1 )) ≤ k1 = Sn3

A(y1), ...,m
3
A(yn).

Taking yn1 ∈ U(m3
A; k) and yn1 ∈ L(n3

A; k)then

m3
A(y) = k0 ≥ k and n3

A(y) = k1 ≤ k

Thus, y ∈ U(m3
A; k0) and y ∈ L(n3

A; k1).

Since, by the assumption, ȳ ∈ U(m3
A; k0) and ȳ ∈ U(m3

A; k0),

Where m3
A(ȳ) ≥ k0 = m3

A(y) and n3
A(ȳ) ≥ k1 = n3

A(y).

This completes the proof. □

Theorem 3.4. Let A be the fermatean uncertainty collection in G is an extension fermatean
uncertainty subgroup of (G,p) if and only if m3

A - level k-cut and n3
A - level k-cut of G

are also extension subgroup of (G,p). For each i=1,2,3,· · · ,n and yn1 ∈ G satisfies the
following conditions:

(i) m3
A

(
ρ
(
yn1

))
≥ T

{
m3

A

(
y1
)
, · · · ,m3

A

(
yn

)}
(ii) n3

A

(
ρ
(
yn1

))
≤ S

{
n3
A

(
y1
)
, · · · , n3

A

(
yn

)}
(iii) m3

A

(
yn1

)
≥ T

{
m3

A

(
y1
)
, · · · ,m3

A

(
yi−1

)
,m3

A

(
ρ
(
y1j

)n)
,m3

A

(
yi−1

)
m3

A

(
yn

)}
(iii) n3

A

(
yn1

)
≤ S

{
n3
A

(
y1
)
, · · · , n3

A

(
yi−1

)
, n3

A

(
ρ
(
y1j

)n)
, n3

A

(
yi−1

)
n3
A

(
yn

)}
.

Proof. According to Theorem 3.3, for each non -empty level subsets both U

(
m3

A; k0

)
and L

(
n3
A; k1

)
are closed under ρ operation in

(
G, ρ

)
with yn1 ∈ U

(
m3

A; k0

)
and yn1 ∈

L

(
n3
A; k1

)
satisfies ρ

(
yn1

)
∈ U

(
n3
A; k1

)
and ρ

(
yn1

)
∈ L

(
n3
A; k1

)
.

For some i=1,2,· · · ,n and z ∈ G we have y0, y
i−1
i , yni+1, where ρ

(
yi−1
i , z, yni+1

)
satisfies

y0 ∈ U

(
m3

A; k0

)
and y0 ∈ L

(
m3

A; k1

)
. Therefore, z ∈ m3

A(k) and z ∈ n3
A(z) is

a solution of Eqn.(1). Conclude that both level k-cuts m3
A and n3

A is also a extension
subgroups in G.
Conversely, assume that bothe level k-cuts m3

A and n3
A in G be an extension subgroups

then the following conditions in (i) and (ii) are proved.
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For yn1 ∈ G, we consider

k0 = T

{
m3

A

(
y1
)
, · · · ,m3

A

(
yi−1

)
,m3

A

(
ρ
(
y1j

)n)
,m3

A

(
yi−1

)
m3

A

(
yn

)}
k1 = S

{
n3
A

(
y1
)
, · · · , n3

A

(
yi−1

)
, n3

A

(
ρ
(
y1j

)n)
, n3

A

(
yi−1

)
n3
A

(
yn

)}
then it satisfies yi−1

i , yni+1, ρ

(
yn1

)
∈ U

(
m3

A; k0

)
and yi−1

i , yni+1, ρ(y
n
1 ) ∈ L(n3

A; k0).

According to Definition 3.1: then we obtained as yi ∈ U(m3
A; k0) and yi ∈ L(n3

A; k0).
Thus, m3

A(yi) ≤ k0 and n3
A(yi) ≤ k1 satisfies the conditions (iii) and (iv). □

Definition 3.4. The Subgroup (G, ρ) and (G1, ρ) are under fermatean extension and for
any yni ∈ G define a homomorphism map: α : G → G1 defined by α(ρ(yn1 )) = ρ(αn(yn1 ))
where αn(yn1 ) = α(y1), · · · , α(yn).
The above homomorphism map is said to be a fermatean extension homomorphism. For
any fermatean uncertainty collection in G defined by

α−1(A) =

(
m3

Aα
−1(A), n3

Aα
−1(A)

)
,

where, m3
Aα

−1(A)(y) = m3
A(α(y)) and n3

Aα
−1(A)(y) = n3

A(α(y))∀y ∈ G.
For any A ∈ G, the symbol α(A) as the image of A under α is also a fermatean uncertainty
collection in G1 defined by α(A) = (αsup(m

3
A), αinf (n

3
A)).

For all y ∈ G and x ∈ G1 then

αsup(x) =

{
sup

y∈α−1(x)

m3
A(y), if α−1(x) ̸= ϕ,

0, Otherwise

αinf (x) =

{
inf

y∈α−1(x)
n3
A(y), if α−1(x) ̸= ϕ,

0, elsewhere

Theorem 3.5. For all y ∈ G, an into map α : G → G1 is defined by α(ȳ) = α(y). If A be
an extension fermatean uncertainty subgroup of (G1, ρ) then α−1(A) is also an extension
fermatean uncertainty subgroup under (G, ρ).

Proof. Let yn1 ∈ G We have,

m3
α−1(A)(ρ(y

n
1 )) =m3

A(α(y
n
1 )

=m3
A(αρ(α

n)(yn1 ))

≥T{m3
A(α(y1)), ...,m

3
A(α(yn))}

=T{m3
α−1(A)(y1), ...,m

3
α−1(A)(yn)}

n3
α−1(A)(ρ(y

n
1 )) =n3

A(α(y
n
1 ))

=n3
A(αρ(α

n)(yn1 ))

≥S{n3
A(α(y1)), .., n

3
A(α(yn))}

=S{n3
α−1(A)(y1), ..., n

3
α−1(A)(yn}

m3
α−1(A)(ȳ) = m3

A(α(ȳ)) ≥m3
A(α(y)) = m3

α−1(A)(y)

n3
α−1(A)(ȳ) = n3

A(α(ȳ)) ≤n3
A(α(y)) = n3

α−1(A)(y)
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Converse part is obviously true to be discussed in Theorem 3.10. □

Theorem 3.6. Let α : G → G1 be an extension homomorphism. If α−1(A) is an ex-
tension fermatean uncertainty subgroup of (G, ρ) then A is also an extension fermatean
uncertainty group of (G1, ρ).

Theorem 3.7. Let α : G → G1 be a map. If A is an extension fermatean uncertainty
subgroup of (G, ρ) then α(A) = (y, αsup(m

3
A), αinf (n

3
A)) is also an extension fermatean

uncertainty subgroup of (G1, ρ) .

Proof. Let α : G→ G1 be a map and for any xn
1 , yn1 ∈ G then

{yi/yi ∈ α−1(ρ(xn
1 ))} ⊂ {ρ(yn1 ) ∈ G/x1 ∈ α−1(x1), y2 ∈ α−1(x2), ..., yn ∈

α−1(xn)}
We have αsup(m

3
A)(ρ(x

n
1 )) = sup{m3

A(y
n
1 )/yi ∈ α−1(ρ(xn

1 ))}
≥ sup{m3

A(ρ(y
n
1 ))/y1 ∈ α−1(x1), y2 ∈ α−1(x2), ..., yn ∈ α−1(xn)}

≥ sup {T{m3
A(y1),m

3
A(y2), ...,m

3
A(yn)/y1 ∈ α−1(x1), y2 ∈ α−1(x2), ..., yn ∈

α−1(xn)}}
= T{sup{m3

A(y1)/y1 ∈ α−1(x1)}, sup{m3
A(y2)/y2 ∈ α−1(x1)}, ..., sup{m3

A(yn)
/y1 ∈ α−1(xn)}

= T{αsup(m
3
A(x1)), αsup(m

3
A(x2)), ..., αsup(m

3
A(xn))}

αsup(n
3
A)(ρ(x

n
1 )) = inf{n3A(yn1 )/y1 ∈ α−1(ρ(xn

1 ))}
≤ inf{n3

A(ρ(y
n
1 ))/y1 ∈ α−1(x1), y2 ∈ α−1(x2), ..., yn ∈ α−1(xn)}

≤ inf{S{n3
A(y1), n

3
A(y2), ...n

3
A(yn)/y1 ∈ α−1(x1), y2 ∈ α−1(x2), ..., yn ∈ α−1(xn)}}

= S{inf{n3
A(y1)/y1 ∈ α−1(x1)}, inf{n3

A(y)/y2 ∈ α−1(x2)}, ..., inf{n3
A(yn)/yn ∈

α−1(xn)}}
= S{αinf (n

3
A(x1)), αinf (n

3
A(x2)), ..., αinf (n

3
A(xn))}

αsup(m
3
A(y)) = sup{m3

A(y)/y ∈ α−1(ρ(x))}
≥ sup{m3

A(y)/y ∈ α−1(ρ(x))}
= αsup(m

3
A)(y))

αsup(n
3
A)(y) = inf{(n3

A)(y)/y ∈ α−1(ρ(x))}
≤ inf{n3

A(y)/y ∈ α−1(ρ(x))} ≤ inf{n3
A(y)/y ∈ α−1(ρ(x))} = αsup(n

3
A)(y).

Hence the theorem is proved. □

Corollary 3.8. A fermatean uncertainty collection A on (G,•) is a fermatean uncertainty
subgroup if and only if it satisfies the following relations for any x,y ∈ G given by

(i) m3
A(y) ≥ T{m3

A(x),m
3
A(y)} and n3

A(xy) ≤ S{n3
A(x), n

3
A(y)}

(ii) m3
A(x) ≥ T{m3

A(y),m
3
A(xy)} and n3

A(x) ≤ S{n3
A(y), n

3
A(xy)}

(iii) m3
A(y) ≥ T{m3

A(x),m
3
A(xy)} and n3

A(y) ≤ S{n3
A(x), n

3
A(xy)}

Theorem 3.9. Let A be a collection of an extension fermatean uncertainty subgroup
(G, ρ). For any x, y ∈ G, there exist a ∈ G such that m3

A(a) ≥ m3
A(x) and n3

A(a) ≤
n3
A(x) then A is an extension fermatean uncertainty subgroup of retα(G, ρ).
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Proof. For each a, x, y ∈ G, we have the relation

m3
A(xy) = m3

A(ρ(x, a
(n−2), y))

≥ T{m3
A(x),m

3
A(a),m

3
A(y)}

= T{m3
A(x),m

3
A(y)}

Also, we write n3
A(xy) = n3

A(ρ(x, a
(n−2), y))

≤ S{n3
A(x), n

3
A(a), n

3
A(y)}

= S{n3
A(x), n

3
A(y)}

m3
A(x

−1) = m3
A(ρ(a, x

(n−3), x̄, ā)) ≥ T{m3
A(x),m

3
A(x̄),m

3
A(a),m

3
A(ā)}

= m3
A(x)

n3
A(x

−1) = n3
A(ρ(a, x

(n−3), x̄, ā)) ≥ S{n3
A(x), n

3
A(x̄), n

3
A(a), n

3
A(ā)}

= n3
A(x)

In theorem 3.9, for that we have m3
A(a) ≥ m3

A(x) and n3
A(a) ≤ n3

A(x)

This completes the proof. Followed by the numerical example is discussed here. □

Example 3.5. Define a map: ρ : Z3
4 → Z4 on (Z4, ρ) defined by ρ(y1, y2, y3) =

S(y1, y2, y3). Clearly the ternary subgroup (Z4, ρ) obtained from Z4 under this map.
The fermatean uncertainty collection A is given by

m3
A =

{
1, if y = 0,

0.3, if y = 1, 2, 3

n3
A =

{
0, if y = 0,

0.8, if y = 1, 2, 3

Clearly, we say that A is also a fermatean uncertainty ternary subgroup of (Z4, ρ) For
ret(Z4, ρ). we have the algebraic operations are
m3

A(0 • 0) = m3
A(ρ(0, 1, 0)) = m3

A(1) = 0.3 is not greater than T{m3
A(0),m

3
A(0)} = 1.

Also, n3
A(0 • 0) = n3

A(ρ(0, 1, 0)) = n3
A(1) = 0.8 is not less than S{n3

A(0), n
3
A(0)} = 1.

Hence, for that we have m3
A(a) ≥ m3

A(x) and n3
A(a) ≤ n3

A(x).

Theorem 3.10. Let A be an extensiion fermatean uncertainty subgroup of retα(G, ρ). For
any x, a ∈ G satisfies m3

A(a) ≥ m3
A(x) and n3

A(a) ≤ n3
A(x) then A is an extension

fermatean uncertainity subgroup under (G, ρ).

Proof. From equation 2.1 for any extension subgroup of the form given in Eqn.(2), we
have

(G, ·) = retα(G, ρ), ϕ(x) = ρ(a, y, y(n−2)) and b = ρ(ā, ..ā) then
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m3
A(ϕ(y)) = m3

A(ρ(ā, y, y
(n−2)))

≥ T{m3
A(ā),m

3
A(y),m

3
A(a)} = m3

A(y),

m3
A(ϕ

2(y)) = m3
A(ρ(ā, ϕ(y), y

(n−2)))

≥ T{m3
A(ā),m

3
A(ϕ(y)),m

3
A(a)} = m3

A(ϕ(y)),

≥ m3
A(y)

In general, for any y ∈ G,K ∈ N then the relation m3
A(ϕ

k(y)) ≥ m3
A(y) is true.

Similarly,

n3
A(ϕ(y)) = n3

A(ρ(ā, y, y
(n−2)))

≥ S{n3
A(ā), n

3
A(y), n

3
A(a)} = n3

A(y),

n3
A(ϕ

2(y)) = n3
A(ρ(ā, ϕ(y), y

(n−2)))

≥ S{n3
A(ā), n

3
A(ϕ(y)), n

3
A(a)} = n3

A(ϕ(y)),

≥ n3
A(y)

In general, for any y ∈ G,K ∈ N then the relation n3
A(ϕ

k(y)) ≥ n3
A(y) is true.

For every x ∈ G, the following relations are obviously true. We have,

m3
A(b) = m3

A(ρ(ā, ....ā)) ≥ m3
A(ā) ≥ m3

A(y)

n3
A(b) = n3

A(ρ(ā, ....ā)) ≥ n3
A(ā) ≥ n3

A(y)

thus,

m3
A(ρ(y1)) = m3

A(y1 ◦ ϕ(y2) ◦ ϕ2(y3) ◦ ... ◦ ϕn−2(yn) ◦ b)
≥ T1{m3

A(ϕ(y1)),m
3
A(ϕ(y2)), .....m

3
A(ϕ(y3)), ...,m

3
A(ϕ(yn)),m

3
A(b)}

≥ T{m3
A(y1),m

3
A(y2),m

3
A(y3), ...,m

3
A(yn),m

3
A(b)}

≥ T{m3
A(y1),m

3
A(y2),m

3
A(y3), ...,m

3
A(yn), } and

n3
A(ρ(y1)) = n3

A(y1 ◦ ϕ(y2) ◦ ϕ2(y3) ◦ ... ◦ ϕn−2(yn) ◦ b)
≥ S1{n3

A(ϕ(y1)), n
3
A(ϕ(y2)), .....n

3
A(ϕ(y3)), ..., n

3
A(ϕ(yn)), n

3
A(b)}

≥ S{n3
A(y1), n

3
A(y2), n

3
A(y3), ..., n

3
A(yn), n

3
A(b)}

≥ S{n3
A(y1), n

3
A(y2), n

3
A(y3), ..., n

3
A(yn), }

Finally, we have,

ȳ = (ϕ(y) ◦ ϕ2(y) ◦ .... ◦ ϕn−2(y) ◦ b)−1
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Thus,

m3
A(y) = m3

A(ϕ(y) ◦ ϕ2(y) ◦ .... ◦ ϕn−2(y) ◦ b)−1

≥ m3
A(ϕ(y) ◦ ϕ2(y) ◦ .... ◦ ϕn−2(y) ◦ b)

≥ T{m3
A(ϕ(y)) ◦m3

Aϕ
2(y) ◦m3

Aϕ
n−2(y) ◦m3

A(b)}
≥ T{m3

A(y)◦ ≥ T{m3
A(b)} = m3

A and

n3
A(y) = n3

A(ϕ(y) ◦ ϕ2(y) ◦ .... ◦ ϕn−2(y) ◦ b)−1

≥ n3
A(ϕ(y) ◦ ϕ2(y) ◦ .... ◦ ϕn−2(y) ◦ b)

≥ S{n3
A(ϕ(y)) ◦ n3

Aϕ
2(y) ◦ n3

Aϕ
n−2(y) ◦ n3

A(b)}
≥ S{n3

A(y)◦ ≥ T{n3
A(b)} = n3

A.

This result is derived. □

Corollary 3.11. Let (G, ρ) be a ternary group. For any fermatean uncertainty subgroup
retα(G, ρ) is also a fermatean uncertainty ternary subgroup under (G, ρ).

Proof. Let a be an intermediate element of retα(G, ρ) . For each y ∈ G, the following
inequalities are m3

A(a) ≤ m3
A(y) and n3

A(a) ≤ n3
A(y).Then we have m3

A(a) ≤ m3
A(y)

and n3
A(a) ≤ n3

A(y). But in ternary group a = a (involution operator). For any a, y ∈ G
we have m3

A(a) = m3
A(a) ≥ m3

A(a) ≥ m3
A(y) and n3

A(a) = n3
A(a) ≤ n3

A(a) ≤ m3
A(y).

So m3
A(a) = m3

A(a) ≥ m3
A(y) and n3

A(a) = n3
A(a) ≤ n3

A(y) The above relations are
satisfying the Theorem 3.10. Followed by the numerical example is discussed here. □

Example 3.6. Define a map ρ : Z3
12 → Z12 under the additive group (Z12, ρ) defined by

ρ(y1, y2, y3) = S(y1, y2, y3) . Let A be a fermatean uncertainty subgroup of rett(G, ρ)
induced by subgroups S1 = {11}, S2 = {5, 11} and S3 = {1, 3, 5, 7, 9, 11}
Define the fermatean uncertainty collection as follows

m3
A(y)=


0.7 if y = 1;

0.5 if y = 5;

0.3 if y = 1, 3, 7, 9;

0.1 if y ∈ S3;

n3
A(y)=


0.2 if y = 11;

0.4 if y = 5;

0.6 if y = 1, 3, 7, 9;

0.8 if y ∈ S3;

Then, m3
A(5) = m3

A(7) = 0.3 is not greater than are equal to 0.5 = m3
A(5)

n3
A(5) = n3

A(7) = 0.6 is not less than are equal to 0.4 = n3
A(5)

Hence, the collection A is not a fermatean uncertainty ternary subgroup.

Remark. From Example 3.6, the following results are true.
1 The fermatean uncertainty subgroups of group retα(G, ρ) are not an extension

fermatean uncertainty subgroups.
2 In Theorem 3.10 the conditions m3

A(y) ≥ m3
A(y) and n3

A(y) ≤ n3
A(y) cannot be

neglected. Also, in the Example 3.6 we have m3
A(a) = 0.3 is not greater than are

equal to 0.5 = m3
A(5) and n3

A(5) = 0.6 is not less than are equal to 0.4 = n3
A(5).
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3 The relations m3
A(a) ≥ m3

A(y) and n3
A(a) ≤ n3

A(y) cannot be replaced by
m3

A(a) ≥ m3
A(y) and n3

A(a) ≤ n3
A(y) , where a is an identity element of retα(G, ρ)

. In Example 3.6, for any y ∈ Z12, T = 11 then m3
A(11) ≥ m3

A(y) and
n3
A(11) ≤ n3

A(y).

Theorem 3.12. An extension subgroup (G, ρ) of b-derived group (G, •) For any col-
lection in an extension fermatean uncertainty subgroup under(G, •) such that mA(b) ≥
mA(y) and nA(b)leqnA(y) ∀y ∈ G is also an extension fermatean uncertainty subgroup
under(G, ρ)

Proof. According to the extension principle rules (EFUSG1) and (EFUSG2) defined
in Definition 3.1: to prove the extension principle rules (EFUSG3) and (EFUSG4)
under the extension group (G, •) , the b-exempted from an extension fermatean uncertainty
subgroup (G, •) gives y = (y(n−2) • b)−1 Followed by for each y ∈ G,

m3
A(y) = m3

A(y
(n−2) • b)−1

≥ m3
A(y

(n−2) • b)
≤ T{m3

A(y
(n−2),m3

A(b))}
= m3

A(y)

n3
A(y) = n3

A(y
(n−2) • b)−1

≥ n3
A(y

(n−2) • b)
≤ S{n3

A(y
(n−2), n3

A(b))}
= n3

A(y)

This completes the proof of the result. □

Corollary 3.13. For any fermatean uncertainty group of a group (G, •) is an extension
fermatean uncertainty subgroup of (G, ρ) obtained by (G, •).

Proof. An extension group (G, ρ) is obtained from (G, •) by substituting an element b = e
in Theorem 3.12 gives the relations
mA(e) ≥ mA(y), nA(e) ≤ nA(y), ∀y ∈ G.
Therefore, m3

A(5) = m3
A(7) = 0.3 is not greater than are equal to 0.5 = m3

A(5)
n3
A(5) = n3

A(7) = 0.6 is not less than are equal to 0.4 = n3
A(5)

Hence, the collection A is not a fermatean uncertainty ternary subgroup of (G, ρ). □

4. CONCLUSIONS

We explained different aspects of cubic fermatean uncertainty soft ideal structures and
fermatean uncertainty multi-group over multi-homomorphism. An extension of this fer-
matean uncertainty study using soft subgroup structures with norm. Moreover, we dis-
cussed the important mathematical proofs as Theorems, corollaries and suitable examples.
In future, we extended this research into field of picture uncertainty collection and spherical
uncertainty collections.
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