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PARAMETRIZED ERROR FUNCTION BASED BANACH SPACE VALUED
UNIVARIATE NEURAL NETWORK APPROXIMATION

GEORGE A. ANASTASSIOU

ABSTRACT. Here we research the univariate quantitative approximation of Banach space
valued continuous functions on a compact interval or all the real line by quasi-interpolation
Banach space valued neural network operators. We perform also the related Banach space
valued fractional approximation. These approximations are derived by establishing Jack-
son type inequalities involving the modulus of continuity of the engaged function or its Ba-
nach space valued high order derivative or fractional derivaties. Our operators are defined
by using a density function induced by a parametrized error function. The approximations
are pointwise and with respect to the uniform norm. The related Banach space valued
feed-forward neural networks are with one hidden layer. We finish with a convergence
analysis.

1. INTRODUCTION

The author in [1] and [2], see Chapters 2-5, was the first to establish neural network ap-
proximation to continuous functions with rates by very specifically defined neural network
operators of Cardaliaguet-Euvrard and ”Squashing” types, by employing the modulus of
continuity of the engaged function or its high order derivative, and producing very tight
Jackson type inequalities. He treats there both the univariate and multivariate cases. The
defining these operators ”bell-shaped” and ”squashing” functions are assumed to be of
compact suport. Also in [2] he gives the N th order asymptotic expansion for the error of
weak approximation of these two operators to a special natural class of smooth functions,
see Chapters 4-5 there.

The author inspired by [15], continued his studies on neural networks approximation by
introducing and using the proper quasi-interpolation operators of sigmoidal and hyperbolic
tangent type which resulted into [3] - [7], by treating both the univariate and multivariate
cases. He did also the corresponding fractional case [8].

In this article we are greatly inspired by the related works [16], [17].
Let h be a general sigmoid function with h (0) = 0, and y = ±1 the horizontal

asymptotes. Of course h is strictly increasing over R. Let the parameter 0 < r < 1
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and x > 0. Then clearly −x < x and −x < −rx < rx < x, furthermore it holds
h (−x) < h (−rx) < h (rx) < h (x). Consequently the sigmoid y = h (rx) has a graph
inside the graph of y = h (x), of course with the same asymptotes y = ±1. Therefore
h (rx) has derivatives (gradients) at more points x than h (x) has different than zero or not
as close to zero, thus killing less number of neurons! And of course h (rx) is more distant
from y = ±1, than h (x) it is. A highly desired fact in Neural Networks theory.

Different activation functions allow for different non-linearities which might work bet-
ter for solving a specific function. So the need to use neural networks with various acti-
vation functions is vivid. Thus, performing neural network approximations using different
activation functions is not only necessary but fully justified.

The author here performs parametrized error function based neural network approxima-
tions to continuous functions over compact intervals of the real line or over the whole R
with values to an arbitrary Banach space (X, ∥·∥). Finally he treats completely the related
X-valued fractional approximation. All convergences here are with rates expressed via the
modulus of continuity of the involved function or its X-valued high order derivative, or
X-valued fractional derivatives and given by very tight Jackson type inequalities.

Our compact intervals are not necessarily symmetric to the origin. Some of our upper
bounds to error quantity are very flexible and general. In preparation to prove our results
we establish important properties of the basic density function defining our operators which
is induced by a parametrized error function.

Feed-forward X-valued neural networks (FNNs) with one hidden layer, the only type
of networks we deal with in this article, are mathematically expressed as

Nn (x) =

n∑
j=0

cjσ (⟨aj · x⟩+ bj) , x ∈ Rs, s ∈ N,

where for 0 ≤ j ≤ n, bj ∈ R are the thresholds, aj ∈ Rs are the connection weights,
cj ∈ X are the coefficients, ⟨aj · x⟩ is the inner product of aj and x, and σ is the activation
function of the network. Here we work for a parametrized error function. About neural
networks in general read [18], [19], [21]. See also [9] for a complete study of real valued
approximation by neural network operators.

2. BASICS

We consider here the parametrized (Gauss) error special function

erfλz =
2√
π

∫ λz

0

e−t2dt, λ > 0, z ∈ R, (1)

which is a sigmoidal type function and a strictly increasing function. It is acting here as an
activation function.

Of special interest in neural network theory is when 0 < λ < 1, see 1. Introduction.
It has the basic properties

erf (λ0) = 0, erf (−λx) = −erf (λx) ,

erf (λ (+∞)) = 1, erf (λ (−∞)) = −1,
(2)

and
(erf (λx))

′
=

2λ√
π
e−(λx)2 , x ∈ R. (3)
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We consider the function

χ (x) =
1

4
(erf (λ (x+ 1))− erf (λ (x− 1))) , x ∈ R, (4)

and we notice that

χ (−x) = 1

4
(erf (λ (−x+ 1))− erf (λ (−x− 1))) =

1

4
(erf (−λ (x− 1))− erf (−λ (x+ 1))) =

1

4
(−erf (λ (x− 1)) + erf (λ (x+ 1))) =

1

4
(erf (λ (x+ 1))− erf (λ (x− 1))) = χ (x) . (5)

Thus χ is an even function.
Since x+1 > x−1, then erf (λ (x+ 1)) > erf (λ (x− 1)), and χ (x) > 0, all x ∈ R.
We see

χ (0) =
erfλ

2
. (6)

Let x > 0, we have that

χ′ (x) =
1

4

(
(erf (λ (x+ 1)))

′ − (erf (λ (x− 1)))
′)

=

1

4

2λ√
π

(
e−λ2(x+1)2 − e−λ2(x−1)2

)
=

λ

2
√
π

(
1

eλ2(x+1)2
− 1

eλ2(x−1)2

)
(7)

λ

2
√
π

(
eλ

2(x−1)2 − eλ
2(x+1)2

eλ2(x+1)2eλ2(x−1)2

)
< 0,

proving χ′ (x) < 0, for x > 0. That is χ is strictly decreasing on [0,∞) and it is strictly
increasing on (−∞, 0], and χ′ (0) = 0.

Clearly, the x-axis is the horizontal asymptote of χ.
Conclusion, χ is a bell symmetric function with maximum

χ (0) =
erfλ

2
.

Let h : R → [−1, 1] be a general sigmoid function, such that it is strictly increasing,
h (0) = 0, h (−x) = −h (x), h (+∞) = 1, h (−∞) = −1. Also h is strictly convex over
(−∞, 0] and strictly concave over [0,+∞), with h(2) ∈ C (R), see [14].

So erfλx is a special case of h. Furthermore χ (x) is a special case of the following
general function

ψ (x) :=
1

4
(h (x+ 1)− h (x− 1)) , x ∈ R, (8)

see [14].
We have

Theorem 2.1. ([14]) It holds
∞∑

i=−∞
ψ (x− i) = 1, ∀ x ∈ R. (9)

Thus
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Corollary 2.2. It holds
∞∑

i=−∞
χ (x− i) = 1, ∀ x ∈ R. (10)

We have

Theorem 2.3. ([14]) It holds ∫ ∞

−∞
ψ (x) dx = 1. (11)

Thus

Corollary 2.4. We have that ∫ ∞

−∞
χ (x) dx = 1. (12)

Hence χ (x) is a density function on R.
We need

Theorem 2.5. ([14]) Let 0 < α < 1, and n ∈ N with n1−α > 2. It holds
∞∑

 k = −∞
: |nx− k| ≥ n1−α

ψ (nx− k) <

(
1− h

(
n1−α − 2

))
2

, (13)

with

lim
n→+∞

(
1− h

(
n1−α − 2

))
2

= 0.

Thus we obtain

Corollary 2.6. Let 0 < α < 1, and n ∈ N with n1−α > 2, λ > 0. It holds
∞∑

 k = −∞
: |nx− k| ≥ n1−α

χ (nx− k) <

(
1− erf

(
λ
(
n1−α − 2

)))
2

, (14)

with

lim
n→+∞

(
1− erf

(
λ
(
n1−α − 2

)))
2

= 0.

Denote by ⌊·⌋ the integral part and by ⌈·⌉ the ceiling of a number.
Furthermore we need

Theorem 2.7. ([14]) Let x ∈ [a, b] ⊂ R and n ∈ N so that ⌈na⌉ ≤ ⌊nb⌋. It holds
1∑⌊nb⌋

k=⌈na⌉ ψ (nx− k)
<

1

ψ (1)
, ∀ x ∈ [a, b] . (15)

Therefore we derive

Corollary 2.8. Let x ∈ [a, b] ⊂ R, λ > 0 and n ∈ N so that ⌈na⌉ ≤ ⌊nb⌋. Then
1∑⌊nb⌋

k=⌈na⌉ χ (nx− k)
<

1

χ (1)
=

4

erf (2λ)
. (16)
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Remark. As in [14], we have that

lim
n→∞

⌊nb⌋∑
k=⌈na⌉

χ (nx− k) ̸= 1. (17)

Note. For large enough n we always obtain ⌈na⌉ ≤ ⌊nb⌋. Also a ≤ k
n ≤ b, iff ⌈na⌉ ≤

k ≤ ⌊nb⌋. As in [14], we obtain that
⌊nb⌋∑

k=⌈na⌉

χ (nx− k) ≤ 1. (18)

Let (X, ∥·∥) be a Banach space.

Definition 2.1. Let f ∈ C ([a, b] , X) and n ∈ N : ⌈na⌉ ≤ ⌊nb⌋. We introduce and define
the X-valued linear neural network operators

An (f, x) :=

∑⌊nb⌋
k=⌈na⌉ f

(
k
n

)
χ (nx− k)∑⌊nb⌋

k=⌈na⌉ χ (nx− k)
, x ∈ [a, b] . (19)

Clearly here An (f, x) ∈ C ([a, b] , X). For convenience we use the same An for real
valued function when needed. We study here the pointwise and uniform convergence of
An (f, x) to f (x) with rates.

For convenience also we call

A∗
n (f, x) :=

⌊nb⌋∑
k=⌈na⌉

f

(
k

n

)
χ (nx− k) , (20)

(similarly A∗
n can be defined for real valued function) that is

An (f, x) =
A∗

n (f, x)∑⌊nb⌋
k=⌈na⌉ χ (nx− k)

. (21)

So that

An (f, x)− f (x) =
A∗

n (f, x)∑⌊nb⌋
k=⌈na⌉ χ (nx− k)

− f (x)

=
A∗

n (f, x)− f (x)
(∑⌊nb⌋

k=⌈na⌉ χ (nx− k)
)

∑⌊nb⌋
k=⌈na⌉ χ (nx− k)

. (22)

Consequently we derive

∥An (f, x)− f (x)∥ ≤ 4

erf (2λ)

∥∥∥∥∥∥A∗
n (f, x)− f (x)

 ⌊nb⌋∑
k=⌈na⌉

χ (nx− k)

∥∥∥∥∥∥ . (23)

That is

∥An (f, x)− f (x)∥ ≤ 4

erf (2λ)

∥∥∥∥∥∥
⌊nb⌋∑

k=⌈na⌉

(
f

(
k

n

)
− f (x)

)
χ (nx− k)

∥∥∥∥∥∥ . (24)

We will estimate the right hand side of (24).
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For that we need, for f ∈ C ([a, b] , X) the first modulus of continuity

ω1 (f, δ)[a,b] := ω1 (f, δ) := sup
x, y ∈ [a, b]
|x− y| ≤ δ

∥f (x)− f (y)∥ , δ > 0. (25)

Similarly, it is defined ω1 for f ∈ CuB (R, X) (uniformly continuous and bounded func-
tions from R into X), for f ∈ CB (R, X) (continuous and bounded X-valued) and for
f ∈ Cu (R, X) (uniformly continuous).

The fact f ∈ C ([a, b] , X) or f ∈ Cu (R, X), is equivalent to lim
δ→0

ω1 (f, δ) = 0, see

[11].

Definition 2.2. When f ∈ CuB (R, X), or f ∈ CB (R, X), we define

An (f, x) :=

∞∑
k=−∞

f

(
k

n

)
χ (nx− k) , n ∈ N, x ∈ R, (26)

the X-valued quasi-interpolation neural network operator.

Remark. We have that ∥∥∥∥f (kn
)∥∥∥∥ ≤ ∥f∥∞,R < +∞,

and ∥∥∥∥f (kn
)∥∥∥∥χ (nx− k) ≤ ∥f∥∞,R χ (nx− k) , (27)

and
λ∑

k=−λ

∥∥∥∥f (kn
)∥∥∥∥χ (nx− k) ≤ ∥f∥∞,R

(
λ∑

k=−λ

χ (nx− k)

)
,

and finally
∞∑

k=−∞

∥∥∥∥f (kn
)∥∥∥∥χ (nx− k) ≤ ∥f∥∞,R , (28)

a convergent in R series.
So the series

∑∞
k=−∞ f

(
k
n

)
χ (nx− k) is absolutely convergent in X , hence it is con-

vergent in X and An (f, x) ∈ X .

We denote by ∥f∥∞ := sup
x∈[a,b]

∥f (x)∥, for f ∈ C ([a, b] , X), similarly is defined for

f ∈ CB (R, X) .

3. MAIN RESULTS

We present a series ofX-valued neural network approximations to a function given with
rates.

We first give

Theorem 3.1. Let f ∈ C ([a, b] , X), 0 < α < 1, n ∈ N : n1−α > 2, λ > 0, x ∈ [a, b] .
Then

i)

∥An (f, x)− f (x)∥ ≤ 4

erf (2λ)

[
ω1

(
f,

1

nα

)
+
(
1− erfλ

(
n1−α − 2

))
∥f∥∞

]
=: ρ,

(29)
and
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ii)
∥An (f)− f∥∞ ≤ ρ. (30)

We notice lim
n→∞

An (f) = f , pointwise and uniformly.

The speed of convergence is max
(

1
nα ,
(
1− erfλ

(
n1−α − 2

)))
.

Proof. As similar to [13], p. 293 is omitted. □

Next we give

Theorem 3.2. Let f ∈ CB (R, X), 0 < α < 1, n ∈ N : n1−α > 2, λ > 0, x ∈ R. Then
i)∥∥An (f, x)− f (x)

∥∥ ≤ ω1

(
f,

1

nα

)
+
(
1− erfλ

(
n1−α − 2

))
∥f∥∞ =: µ, (31)

and
ii) ∥∥An (f)− f

∥∥
∞ ≤ µ. (32)

For f ∈ CuB (R, X) we get lim
n→∞

An (f) = f , pointwise and uniformly.

The speed of convergence is max
(

1
nα ,
(
1− erfλ

(
n1−α − 2

)))
.

Proof. As similar to [13], p. 294 is omitted. □

In the next we discuss high order neural network X-valued approximation by using the
smoothness of f .

Theorem 3.3. Let f ∈ CN ([a, b] , X), n,N ∈ N, 0 < α < 1, λ > 0, x ∈ [a, b] and
n1−α > 2. Then

i)
∥An (f, x)− f (x)∥ ≤

4

erf (2λ)


N∑
j=1

∥∥f (j) (x)∥∥
j!

[
1

nαj
+

(
1− erfλ

(
n1−α − 2

))
2

(b− a)
j

]
+ (33)

[
ω1

(
f (N),

1

nα

)
1

nαNN !
+

(
1− erfλ

(
n1−α − 2

)) ∥∥f (N)
∥∥
∞ (b− a)

N

N !

]}
ii) assume further f (j) (x0) = 0, j = 1, ..., N, for some x0 ∈ [a, b], it holds

∥An (f, x0)− f (x0)∥ ≤ 4

erf (2λ){
ω1

(
f (N),

1

nα

)
1

nαNN !
+

(
1− erfλ

(
n1−α − 2

)) ∥∥f (N)
∥∥
∞ (b− a)

N

N !

}
, (34)

and
iii)

∥An (f)− f∥∞ ≤ 4

erf (2λ)


N∑
j=1

∥∥f (j)∥∥∞
j!

[
1

nαj
+

(
1− erfλ

(
n1−α − 2

))
2

(b− a)
j

]
+

[
ω1

(
f (N),

1

nα

)
1

nαNN !
+

(
1− erfλ

(
n1−α − 2

)) ∥∥f (N)
∥∥
∞ (b− a)

N

N !

]}
. (35)

Again we obtain lim
n→∞

An (f) = f , pointwise and uniformly.
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Proof. As similar to [13], pp. 296-301 is omitted. □

All integrals from now on are of Bochner type [20].
We need

Definition 3.1. ([12]) Let [a, b] ⊂ R, X be a Banach space, α > 0; m = ⌈α⌉ ∈ N, (⌈·⌉ is
the ceiling of the number), f : [a, b] → X . We assume that f (m) ∈ L1 ([a, b] , X). We call
the Caputo-Bochner left fractional derivative of order α:

(Dα
∗af) (x) :=

1

Γ (m− α)

∫ x

a

(x− t)
m−α−1

f (m) (t) dt, ∀ x ∈ [a, b] . (36)

If α ∈ N, we set Dα
∗af := f (m) the ordinary X-valued derivative (defined similar to

numerical one, see [22], p. 83), and also set D0
∗af := f.

By [12], (Dα
∗af) (x) exists almost everywhere in x ∈ [a, b] and Dα

∗af ∈ L1 ([a, b] , X).
If
∥∥f (m)

∥∥
L∞([a,b],X)

< ∞, then by [12], Dα
∗af ∈ C ([a, b] , X) , hence ∥Dα

∗af∥ ∈
C ([a, b]) .

We mention

Lemma 3.4. ([11]) Let α > 0, α /∈ N, m = ⌈α⌉, f ∈ Cm−1 ([a, b] , X) and f (m) ∈
L∞ ([a, b] , X). Then Dα

∗af (a) = 0.

We mention

Definition 3.2. ([10]) Let [a, b] ⊂ R, X be a Banach space, α > 0, m := ⌈α⌉. We assume
that f (m) ∈ L1 ([a, b] , X), where f : [a, b] → X . We call the Caputo-Bochner right
fractional derivative of order α:(

Dα
b−f

)
(x) :=

(−1)
m

Γ (m− α)

∫ b

x

(z − x)
m−α−1

f (m) (z) dz, ∀ x ∈ [a, b] . (37)

We observe that
(
Dm

b−f
)
(x) = (−1)

m
f (m) (x) , for m ∈ N, and

(
D0

b−f
)
(x) = f (x) .

By [10],
(
Dα

b−f
)
(x) exists almost everywhere on [a, b] and

(
Dα

b−f
)
∈ L1 ([a, b] , X).

If
∥∥f (m)

∥∥
L∞([a,b],X)

< ∞, and α /∈ N, by [10], Dα
b−f ∈ C ([a, b] , X) , hence∥∥Dα

b−f
∥∥ ∈ C ([a, b]) .

We need

Lemma 3.5. ([11]) Let f ∈ Cm−1 ([a, b] , X), f (m) ∈ L∞ ([a, b] , X), m = ⌈α⌉, α > 0,
α /∈ N. Then Dα

b−f (b) = 0.

Convention. We assume that

Dα
∗x0

f (x) = 0, for x < x0, (38)

and
Dα

x0−f (x) = 0, for x > x0, (39)
for all x, x0 ∈ [a, b] .

We mention

Proposition 3.6. ([11]) Let f ∈ Cn ([a, b] , X), n = ⌈ν⌉, ν > 0. Then Dν
∗af (x) is

continuous in x ∈ [a, b].

Proposition 3.7. ([11]) Let f ∈ Cm ([a, b] , X), m = ⌈α⌉, α > 0. Then Dν
b−f (x) is

continuous in x ∈ [a, b].
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We also mention

Proposition 3.8. ([11]) Let f ∈ Cm−1 ([a, b] , X), f (m) ∈ L∞ ([a, b] , X), m = ⌈α⌉,
α > 0 and

Dα
∗x0

f (x) =
1

Γ (m− α)

∫ x

x0

(x− t)
m−α−1

f (m) (t) dt, (40)

for all x, x0 ∈ [a, b] : x ≥ x0.
Then Dα

∗x0
f (x) is continuous in x0.

Proposition 3.9. ([11]) Let f ∈ Cm−1 ([a, b] , X), f (m) ∈ L∞ ([a, b] , X), m = ⌈α⌉,
α > 0 and

Dα
x0−f (x) =

(−1)
m

Γ (m− α)

∫ x0

x

(ζ − x)
m−α−1

f (m) (ζ) dζ, (41)

for all x, x0 ∈ [a, b] : x0 ≥ x.
Then Dα

x0−f (x) is continuous in x0.

Corollary 3.10. ([11]) Let f ∈ Cm ([a, b] , X), m = ⌈α⌉, α > 0, x, x0 ∈ [a, b]. Then
Da

∗x0
f (x) , Da

x0−f (x) are jointly continuous functions in (x, x0) from [a, b]
2 into X , X

is a Banach space.

We need

Theorem 3.11. ([11]) Let f : [a, b]
2 → X be jointly continuous, X is a Banach space.

Consider
G (x) = ω1 (f (·, x) , δ, [x, b]) , (42)

δ > 0, x ∈ [a, b] .
Then G is continuous on [a, b] .

Theorem 3.12. ([11]) Let f : [a, b]
2 → X be jointly continuous, X is a Banach space.

Then
H (x) = ω1 (f (·, x) , δ, [a, x]) , (43)

x ∈ [a, b], is continuous in x ∈ [a, b], δ > 0.

We present the following X-valued fractional approximation result by erfλ based neu-
ral networks.

Theorem 3.13. Let α > 0, N = ⌈α⌉, α /∈ N, f ∈ CN ([a, b] , X), 0 < β < 1, λ > 0,
x ∈ [a, b], n ∈ N : n1−β > 2. Then

i) ∥∥∥∥∥∥An (f, x)−
N−1∑
j=1

f (j) (x)

j!
An

(
(· − x)

j
)
(x)− f (x)

∥∥∥∥∥∥ ≤

4

erf (2λ) Γ (α+ 1)


(
ω1

(
Dα

x−f,
1
nβ

)
[a,x]

+ ω1

(
Dα

∗xf,
1
nβ

)
[x,b]

)
nαβ

+

(
1− erfλ

(
n1−β − 2

)
2

)(∥∥Dα
x−f

∥∥
∞,[a,x]

(x− a)
α
+ ∥Dα

∗xf∥∞,[x,b] (b− x)
α
)}

,

(44)
ii) if f (j) (x) = 0, for j = 1, ..., N − 1, we have

∥An (f, x)− f (x)∥ ≤ 4

Γ (α+ 1) erf (2λ)
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(
ω1

(
Dα

x−f,
1
nβ

)
[a,x]

+ ω1

(
Dα

∗xf,
1
nβ

)
[x,b]

)
nαβ

+

(
1− erfλ

(
n1−β − 2

)
2

)(∥∥Dα
x−f

∥∥
∞,[a,x]

(x− a)
α
+ ∥Dα

∗xf∥∞,[x,b] (b− x)
α
)}

,

(45)
iii)

∥An (f, x)− f (x)∥ ≤

4

erf (2λ)


N−1∑
j=1

∥∥f (j) (x)∥∥
j!

{
1

nβj
+ (b− a)

j

(
1− erfλ

(
n1−β − 2

)
2

)}
+

1

Γ (α+ 1)


(
ω1

(
Dα

x−f,
1
nβ

)
[a,x]

+ ω1

(
Dα

∗xf,
1
nβ

)
[x,b]

)
nαβ

+

(
1− erfλ

(
n1−β − 2

)
2

)(∥∥Dα
x−f

∥∥
∞,[a,x]

(x− a)
α
+ ∥Dα

∗xf∥∞,[x,b] (b− x)
α
)}}

,

(46)
∀ x ∈ [a, b] ,

and
iv)

∥Anf − f∥∞ ≤

4

erf (2λ)


N−1∑
j=1

∥∥f (j)∥∥∞
j!

{
1

nβj
+ (b− a)

j

(
1− erfλ

(
n1−β − 2

)
2

)}
+

1

Γ (α+ 1)



(
sup

x∈[a,b]

ω1

(
Dα

x−f,
1
nβ

)
[a,x]

+ sup
x∈[a,b]

ω1

(
Dα

∗xf,
1
nβ

)
[x,b]

)
nαβ

+

(
1− erfλ

(
n1−β − 2

)
2

)
(b− a)

α

(
sup

x∈[a,b]

∥∥Dα
x−f

∥∥
∞,[a,x]

+ sup
x∈[a,b]

∥Dα
∗xf∥∞,[x,b]

)}}
.

(47)
Above, when N = 1 the sum

∑N−1
j=1 · = 0.

As we see here we obtainX-valued fractionally type pointwise and uniform convergence
with rates of An → I the unit operator, as n→ ∞.

Proof. It is very lengthy, as similar to [13], pp. 305-316, is omitted. □

Next we apply Theorem 3.13 for N = 1.

Theorem 3.14. Let 0 < α, β < 1, f ∈ C1 ([a, b] , X), x ∈ [a, b], n ∈ N : n1−β > 2,
λ > 0. Then

i)
∥An (f, x)− f (x)∥ ≤

4

erf (2λ) Γ (α+ 1)


(
ω1

(
Dα

x−f,
1
nβ

)
[a,x]

+ ω1

(
Dα

∗xf,
1
nβ

)
[x,b]

)
nαβ

+



PARAMETRIZED ERROR FUNCTION BASED BANACH SPACE VALUED UNIVARIATE 41(
1− erfλ

(
n1−β − 2

)
2

)(∥∥Dα
x−f

∥∥
∞,[a,x]

(x− a)
α
+ ∥Dα

∗xf∥∞,[x,b] (b− x)
α
)}

,

(48)
and
ii)

∥Anf − f∥∞ ≤ 4

Γ (α+ 1) erf (2λ)

(
sup

x∈[a,b]

ω1

(
Dα

x−f,
1
nβ

)
[a,x]

+ sup
x∈[a,b]

ω1

(
Dα

∗xf,
1
nβ

)
[x,b]

)
nαβ

+

(
1− erfλ

(
n1−β − 2

)
2

)
(b− a)

α

(
sup

x∈[a,b]

∥∥Dα
x−f

∥∥
∞,[a,x]

+ sup
x∈[a,b]

∥Dα
∗xf∥∞,[x,b]

)}
.

(49)

When α = 1
2 we derive

Corollary 3.15. Let 0 < β < 1, f ∈ C1 ([a, b] , X), x ∈ [a, b], n ∈ N : n1−β > 2, λ > 0.
Then

i)
∥An (f, x)− f (x)∥ ≤

8

erf (2λ)
√
π


(
ω1

(
D

1
2
x−f,

1
nβ

)
[a,x]

+ ω1

(
D

1
2
∗xf,

1
nβ

)
[x,b]

)
n

β
2

+

(
1− erfλ

(
n1−β − 2

)
2

)(∥∥∥D 1
2
x−f

∥∥∥
∞,[a,x]

√
(x− a) +

∥∥∥D 1
2
∗xf
∥∥∥
∞,[x,b]

√
(b− x)

)}
,

(50)
and
ii)

∥Anf − f∥∞ ≤ 8

erf (2λ)
√
π

(
sup

x∈[a,b]

ω1

(
D

1
2
x−f,

1
nβ

)
[a,x]

+ sup
x∈[a,b]

ω1

(
D

1
2
∗xf,

1
nβ

)
[x,b]

)
n

β
2

+

(
1− erfλ

(
n1−β − 2

)
2

)√
(b− a)

(
sup

x∈[a,b]

∥∥∥D 1
2
x−f

∥∥∥
∞,[a,x]

+ sup
x∈[a,b]

∥∥∥D 1
2
∗xf
∥∥∥
∞,[x,b]

)}
<∞.

(51)

We finish with

Remark. Some convergence analysis follows:
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Let 0 < β < 1, f ∈ C1 ([a, b] , X), x ∈ [a, b], n ∈ N : n1−β > 2, λ > 0. We elaborate
on (51). Assume that

ω1

(
D

1
2
x−f,

1

nβ

)
[a,x]

≤ K1

nβ
, (52)

and

ω1

(
D

1
2
∗xf,

1

nβ

)
[x,b]

≤ K2

nβ
, (53)

∀ x ∈ [a, b], ∀ n ∈ N, where K1,K2 > 0.
Then it holds[

sup
x∈[a,b]

ω1

(
D

1
2
x−f,

1
nβ

)
[a,x]

+ sup
x∈[a,b]

ω1

(
D

1
2
∗xf,

1
nβ

)
[x,b]

]
n

β
2

≤

(K1+K2)
nβ

n
β
2

=
(K1 +K2)

n
3β
2

=
K

n
3β
2

, (54)

where K := K1 +K2 > 0.
The other summand of the right hand side of (51), for large enough n, converges to zero

at the speed
(

1−erfλ(n1−β−2)
2

)
.

Then, for large enough n ∈ N, by (51) and (54) and the last comment, we obtain that

∥Anf − f∥∞ ≤M max

(
1

n
3β
2

,

(
1− erfλ

(
n1−β − 2

)
2

))
, (55)

where M > 0.

If 1

n
3β
2

≥
(

1−erfλ(n1−β−2)
2

)
, then 1

nβ ≥
(

1−erfλ(n1−β−2)
2

)
, and consequently

∥Anf − f∥∞ in (55) converges to zero faster than in Theorem 3.1. This because the
differentiability of f .
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