q-DEFORMED AND β-PARAMETRIZED HALF HYPERBOLIC TANGENT BASED BANACH SPACE VALUED ORDINARY AND FRACTIONAL NEURAL NETWORK APPROXIMATION

GEORGE A. ANASTASSIOU

Abstract

Here we research the univariate quantitative approximation, ordinary and fractional, of Banach space valued continuous functions on a compact interval or all the real line by quasi-interpolation Banach space valued neural network operators. These approximations are derived by establishing Jackson type inequalities involving the modulus of continuity of the engaged function or its Banach space valued high order derivative of fractional derivatives. Our operators are defined by using a density function generated by a q-deformed and β-parametrized half hyperbolic tangent function, which is a sigmoid function. The approximations are pointwise and of the uniform norm. The related Banach space valued feed-forward neural networks are with one hidden layer.

1. Introduction

The author in [1] and [2], see Chapters 2-5, was the first to establish neural network approximation to continuous functions with rates by very specifically defined neural network operators of Cardaliaguet-Euvrard and "Squashing" types, by employing the modulus of continuity of the engaged function or its high order derivative, and producing very tight Jackson type inequalities. He treats there both the univariate and multivariate cases. The defining these operators "bell-shaped" and "squashing" functions are assumed to be of compact support. Also in [2] he gives the N th order asymptotic expansion for the error of weak approximation of these two operators to a special natural class of smooth functions, see Chapters 4-5 there.

Again the author inspired by [17], continued his studies on neural networks approximation by introducing and using the proper quasi-interpolation operators of sigmoidal and hyperbolic tangent type which resulted into [3]-[7], by treating both the univariate and multivariate cases. He did also the corresponding fractional cases [8], [9], [13].

Let h be a general sigmoid function with $h(0)=0$, and $y= \pm 1$ the horizontal asymptotes. Of course h is strictly increasing over \mathbb{R}. Let the parameter $0<r<1$ and $x>0$. Then clearly $-x<x$ and $-x<-r x<r x<x$, furthermore it holds

[^0]$h(-x)<h(-r x)<h(r x)<h(x)$. Consequently the sigmoid $y=h(r x)$ has a graph inside the graph of $y=h(x)$, of course with the same asymptotes $y= \pm 1$. Therefore $h(r x)$ has derivatives (gradients) at more points x than $h(x)$ has different than zero or not as close to zero, thus killing less number of neurons! And of course $h(r x)$ is more distant from $y= \pm 1$, than $h(x)$ it is. A highly desired fact in Neural Networks theory.

Also brain asymmetry has been observed in animals and humans in terms of structure, function and behaviour. This lateralization is thought to reflect evolutionary, hereditary, developmental, experiential and pathological factors. Therefore it is natural to consider for our study deformed neural network activation functions and operators. So this paper is a specific study under this philosophy of approaching reality as close as possible.

Consequently the author here performs q-deformed and β-parametrized half hyperbolic tangent function activated neural network approximations to continuous functions over compact intervals of the real line or over the whole \mathbb{R} with valued to an arbitrary Banach space $(X,\|\cdot\|)$. Finally he treats completely the related X-valued fractional approximation. All convergences here are with rates expressed via the modulus of continuity of the involved function or its X-valued high order derivative, or X-valued fractional derivatives and given by very tight Jackson type inequalities.

Our compact intervals are not necessarily symmetric to the origin. Some of our upper bounds to error quantity are very flexible and general. In preparation to prove our results we describe important properties of the basic density function defining our operators which is induced by a q-deformed and β-parametrized half hyperbolic tangent function, which is a sigmoid function.

Feed-forward X-valued neural networks (FNNs) with one hidden layer, the only type of networks we deal with in this article, are mathematically expressed as

$$
N_{n}(x)=\sum_{=0}^{n} c_{j} \sigma\left(\left\langle a_{j} \cdot x\right\rangle+b_{j}\right), \quad x \in \mathbb{R}^{s}, s \in \mathbb{N}
$$

where for $0 \leq j \leq n, b_{j} \in \mathbb{R}$ are the thresholds, $a_{j} \in \mathbb{R}^{s}$ are the connection weights, $c_{j} \in X$ are the coefficients, $\left\langle a_{j} \cdot x\right\rangle$ is the inner product of a_{j} and x, and σ is the activation function of the network. About neural networks in general read [19], [21], [23].

2. ABOUT q-DEFORMED AND β-PARAMETRIZED HALF HYPERBOLIC TANGENT FUNCTION φ_{q}

All the next background comes from [16].
Here we describe the properties of the function

$$
\begin{equation*}
\varphi_{q}(t):=\frac{1-q e^{-\beta t}}{1+q e^{-\beta t}}, \quad \forall t \in \mathbb{R} \tag{1}
\end{equation*}
$$

where $q, \beta>0$.
We have that

$$
\varphi_{q}(0)=\frac{1-q}{1+q} .
$$

We notice that

$$
\varphi_{q}(-1)=\frac{1-q e^{\beta t}}{1+q e^{\beta t}}=\frac{\frac{1}{q e^{\beta t}}-1}{\frac{1}{q e^{\beta t}}+1}=-\left(\frac{1-\frac{1}{q} e^{-\beta t}}{1+\frac{1}{q} e^{-\beta t}}\right)=-\varphi_{\frac{1}{q}}(t)
$$

That is

$$
\begin{equation*}
\varphi_{q}(-t)=-\varphi_{\frac{1}{q}}(t), \forall t \in \mathbb{R} \tag{2}
\end{equation*}
$$

and

$$
\varphi_{\frac{1}{q}}(t)=-\varphi_{q}(-t)
$$

hence

$$
\begin{equation*}
\varphi_{\frac{1}{q}}^{\prime}(t)=\varphi_{q}^{\prime}(-t) \tag{3}
\end{equation*}
$$

It is

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \varphi_{q}(t)=\varphi_{q}(+\infty)=1 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow-\infty} \varphi_{q}(t)=\lim _{t \rightarrow-\infty}\left(\frac{e^{\beta t}-q}{e^{\beta t}+q}\right)=-1 \tag{5}
\end{equation*}
$$

that is

$$
\varphi_{q}(-\infty)=-1
$$

We find that

$$
\begin{equation*}
\varphi_{q}^{\prime}(t)=\frac{2 \beta q e^{\beta t}}{\left(e^{\beta t}+q\right)^{2}}>0, \quad \forall t \in \mathbb{R} \tag{6}
\end{equation*}
$$

therefore φ_{q} is striclty increasing.
Next we obtain $(t \in \mathbb{R})$

$$
\begin{equation*}
\varphi_{q}^{\prime \prime}(t)=2 \beta^{2} q e^{\beta t}\left(\frac{q-e^{\beta t}}{\left(e^{\beta t}+q\right)^{3}}\right) \in C(\mathbb{R}), \forall t \in \mathbb{R} \tag{7}
\end{equation*}
$$

We observe that

$$
q-e^{\beta t} \gtrless 0 \Leftrightarrow q \gtrless e^{\beta t} \Leftrightarrow \ln q \gtrless \beta t \Leftrightarrow t \lessgtr \frac{\ln q}{\beta} .
$$

So, in case of $t<\frac{\ln q}{\beta}$, we have that φ_{q} is strictly concave up, with $\varphi_{q}^{\prime \prime}\left(\frac{\ln q}{\beta}\right)=0$.
And in case of $t>\frac{\ln q}{\beta}$, we have that φ_{q} is strictly concave down.
Clearly, φ_{q} is a shifted sigmoid function with $\varphi_{q}(0)=\frac{1-q}{1+q}$, and $\varphi_{q}(-x)=-\varphi_{q^{-1}}(x)$, $\forall x \in \mathbb{R}$, (a semi-odd function), see also [14].

By $1>-1, x+1>x-1$, we consider the activation function

$$
\begin{equation*}
\phi_{q}(x):=\frac{1}{4}\left(\varphi_{q}(x+1)-\varphi_{q}(x-1)\right)>0 \tag{8}
\end{equation*}
$$

$\forall x \in \mathbb{R} ; \beta, q>0$. Notice that $\phi_{q}(\pm \infty)=0$, so the x-axis is horizontal asymptote.
We have that

$$
\begin{gather*}
\phi_{q}(-x)=\frac{1}{4}\left[\varphi_{q}(-x+1)-\varphi_{q}(-x-1)\right]= \\
\frac{1}{4}\left(\frac{1-q e^{-\beta(-x+1)}}{1+q e^{-\beta(-x+1)}}-\frac{1-q e^{-\beta(-x-1)}}{1+q e^{\beta(-x-1)}}\right)= \\
\frac{1}{4}\left(-\left(\frac{1-q e^{\beta(x+1)}}{1+q e^{\beta(x+1)}}\right)+\left(\frac{1-q e^{\beta(x-1)}}{1+q e^{\beta(x-1)}}\right)\right)= \tag{9}\\
\frac{1}{4}\left(-\left(\frac{\frac{1}{q} e^{-\beta(x+1)}-1}{\frac{1}{q} e^{-\beta(x+1)}+1}\right)+\left(\frac{\frac{1}{q} e^{-\beta(x-1)}-1}{\frac{1}{q} e^{-\beta(x-1)}+1}\right)\right)= \\
\frac{1}{4}\left(\left(\frac{1-\frac{1}{q} e^{-\beta(x+1)}}{1+\frac{1}{q} e^{-\beta(x+1)}}\right)-\left(\frac{1-\frac{1}{q} e^{-\beta(x-1)}}{1+\frac{1}{q} e^{-\beta(x-1)}}\right)\right)= \\
\frac{1}{4}\left(\varphi_{\frac{1}{q}}(x+1)-\varphi_{\frac{1}{q}}(x-1)\right)=\phi_{\frac{1}{q}}(x), \forall x \in \mathbb{R} .
\end{gather*}
$$

Thus

$$
\begin{equation*}
\phi_{q}(-x)=\phi_{\frac{1}{q}}(x), \forall x \in \mathbb{R} \tag{10}
\end{equation*}
$$

a deformed symmetry.
Next we have that

$$
\begin{equation*}
\phi_{q}^{\prime}(x)=\frac{1}{4}\left(\varphi_{q}^{\prime}(x+1)-\varphi_{q}^{\prime}(x-1)\right), \quad \forall x \in \mathbb{R} \tag{11}
\end{equation*}
$$

Let $x<\frac{\ln q}{\beta}-1$, then $x-1<x+1<\frac{\ln q}{\beta}$ and $\varphi_{q}^{\prime}(x+1)>\varphi_{q}^{\prime}(x-1)$ (by φ_{q} being strictly concave up for $x<\frac{\ln q}{\beta}$), that is $\phi_{q}^{\prime}(x)>0$. Hence φ_{q} is striclty increasing over $\left(-\infty, \frac{\ln q}{\beta}-1\right)$.

Let now $x-1>\frac{\ln q}{\beta}$, then $x+1>x-1>\frac{\ln q}{\beta}$, and $\varphi_{q}^{\prime}(x+1)<\varphi_{q}^{\prime}(x-1)$, that is $\phi_{q}^{\prime}(x)<0$.

Therefore ϕ_{q} is strictly decreasing over $\left(\frac{\ln q}{\beta}+1,+\infty\right)$.
Next, let $\frac{\ln q}{\beta}-1 \leq x \leq \frac{\ln q}{\beta}+1$. We have that

$$
\begin{gather*}
\phi_{q}^{\prime \prime}(x)=\frac{1}{4}\left[\varphi_{q}^{\prime \prime}(x+1)-\varphi_{q}^{\prime \prime}(x-1)\right] \stackrel{\text { 『 }}{=} \\
\frac{\beta^{2} q}{2}\left[e^{\beta(x+1)}\left(\frac{q-e^{\beta(x+1)}}{\left(e^{\beta(x+1)}+q\right)^{3}}\right)-e^{\beta(x-1)}\left(\frac{q-e^{\beta(x-1)}}{\left(e^{\beta(x-1)}+q\right)^{3}}\right)\right] . \tag{12}
\end{gather*}
$$

By $\frac{\ln q}{\beta}-1 \leq x \Leftrightarrow \frac{\ln q}{\beta} \leq x+1 \Leftrightarrow \ln q \leq \beta(x+1) \Leftrightarrow q \leq e^{\beta(x+1)} \Leftrightarrow q-e^{\beta(x+1)} \leq$ 0.

Ву $x \leq \frac{\ln q}{\beta}+1 \Leftrightarrow x-1 \leq \frac{\ln q}{\beta} \Leftrightarrow \beta(x-1) \leq \ln q \Leftrightarrow e^{\beta(x-1)} \leq q \Leftrightarrow q-e^{\beta(x-1)} \geq$ 0 .

Clearly by 12 we get that $\phi_{q}^{\prime \prime}(x) \leq 0$, for $x \in\left[\frac{\ln q}{\beta}-1, \frac{\ln q}{\beta}+1\right]$.
More precisely ϕ_{q} is concave down over $\left[\frac{\ln q}{\beta}-1, \frac{\ln q}{\beta}+1\right]$, and strictly concave down over $\left(\frac{\ln q}{\beta}-1, \frac{\ln q}{\beta}+1\right)$.

Consequently ϕ_{q} has a bell-type shape over \mathbb{R}.
Of course it holds $\phi_{q}^{\prime \prime}\left(\frac{\ln q}{\beta}\right)<0$.
At $x=\frac{\ln q}{\beta}$, we have

$$
\begin{gather*}
\phi_{q}^{\prime}(x)=\frac{1}{4}\left[\varphi_{q}^{\prime}(x+1)-\varphi_{q}^{\prime}(x-1)\right]= \\
\frac{\beta q}{2}\left[\frac{e^{\beta(x+1)}}{\left(e^{\beta(x+1)}+q\right)^{2}}-\frac{e^{\beta(x-1)}}{\left(e^{\beta(x-1)}+q\right)^{2}}\right]= \\
\frac{\beta q}{2}\left[\frac{e^{\beta\left(\frac{\ln q}{\beta}+1\right)}}{\left(e^{\beta\left(\frac{\ln q}{\beta}+1\right)}+q\right)^{2}}-\frac{e^{\beta\left(\frac{\ln q}{\beta}-1\right)}}{\left(e^{\beta\left(\frac{\ln q}{\beta}-1\right)}+q\right)^{2}}\right]= \\
\frac{\beta q^{2}}{2}\left[\frac{e^{\beta}}{\left(q e^{\beta}+q\right)^{2}}-\frac{e^{-\beta}}{\left(q e^{-\beta}+q\right)^{2}}\right]= \tag{13}\\
\frac{\beta}{2}\left[\frac{e^{\beta}}{\left(e^{\beta}+1\right)^{2}}-\frac{e^{-\beta}}{\left(e^{-\beta}+1\right)^{2}}\right]=
\end{gather*}
$$

$$
\frac{\beta}{2}\left[\frac{e^{\beta}\left(e^{-\beta}+1\right)^{2}-e^{-\beta}\left(e^{\beta}+1\right)^{2}}{\left(e^{\beta}+1\right)^{2}\left(e^{-\beta}+1\right)^{2}}\right]=0
$$

Therefore at $x=\frac{\ln q}{\beta}, \phi_{q}$ achieves a maximum, which is

$$
\begin{gather*}
\phi_{q}(x)=\frac{1}{4}\left(\varphi_{q}(x+1)-\varphi_{q}(x-1)\right)= \\
\frac{1}{4}\left(\left(\frac{1-q e^{-\beta(x+1)}}{1+q e^{-\beta(x+1)}}\right)-\left(\frac{1-q e^{-\beta(x-1)}}{1+q e^{-\beta(x-1)}}\right)\right)= \\
\frac{1}{4}\left(\left(\frac{1-q e^{-\beta x-\beta}}{1+q e^{-\beta x-\beta}}\right)-\left(\frac{1-q e^{-\beta x+\beta}}{1+q e^{-\beta x+\beta}}\right)\right)= \tag{14}\\
\frac{1}{4}\left(\left(\frac{1-q e^{-\beta x} e^{-\beta}}{1+q e^{-\beta x} e^{-\beta}}\right)-\left(\frac{1-q e^{-\beta x} e^{\beta}}{1+q e^{-\beta x} e^{\beta}}\right)\right)= \\
\frac{1}{4}\left(\left(\frac{1-q e^{-\ln q} e^{-\beta}}{1+q e^{-\ln q} e^{-\beta}}\right)-\left(\frac{1-q e^{-\ln q} e^{\beta}}{1+q e^{-\ln q} e^{\beta}}\right)\right)= \\
\frac{1}{4}\left(\left(\frac{1-e^{-\beta}}{1+e^{-\beta}}\right)-\left(\frac{1-e^{\beta}}{1+e^{\beta}}\right)\right)= \\
\frac{1}{4}\left(\left(\frac{e^{\beta}-1}{e^{\beta}+1}\right)-\left(\frac{1-e^{\beta}}{1+e^{\beta}}\right)\right)= \tag{15}\\
\frac{1}{4}\left(\frac{e^{\beta}-1-1+e^{\beta}}{1+e^{\beta}}\right)=\frac{1}{4}\left(\frac{2 e^{\beta}-2}{e^{\beta}+1}\right)= \\
\frac{1}{2}\left(\frac{e^{\beta}-1}{e^{\beta}+1}\right)=\frac{1}{2}\left(\frac{1-e^{-\beta}}{1+e^{-\beta}}\right)=\frac{\varphi_{1}(1)}{2} .
\end{gather*}
$$

Conclusion: the maximum value of ϕ_{q} is

$$
\begin{equation*}
\phi_{q}\left(\frac{\ln q}{\beta}\right)=\frac{\left(1-e^{-\beta}\right)}{2\left(1+e^{-\beta}\right)}=\frac{\varphi_{1}(1)}{2} . \tag{16}
\end{equation*}
$$

We mention

Theorem 2.1. ([16]) We have that

$$
\begin{equation*}
\sum_{i=-\infty}^{\infty} \phi_{q}(x-i)=1, \forall x \in \mathbb{R}, \forall q, \beta>0 \tag{17}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\sum_{i=-\infty}^{\infty} \phi_{q}(n x-i)=1, \forall n \in \mathbb{N}, \forall x \in \mathbb{R} \tag{18}
\end{equation*}
$$

Similarly, it holds

$$
\begin{equation*}
\sum_{i=-\infty}^{\infty} \phi_{\frac{1}{q}}(x-i)=1, \forall x \in \mathbb{R} \tag{19}
\end{equation*}
$$

But $\phi_{\frac{1}{q}}(x-i) \stackrel{10}{=} \phi_{q}(i-x), \forall x \in \mathbb{R}$.
Hence

$$
\begin{equation*}
\sum_{i=-\infty}^{\infty} \phi_{q}(i-x)=1, \forall x \in \mathbb{R} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=-\infty}^{\infty} \phi_{q}(i+x)=1, \forall x \in \mathbb{R} \tag{21}
\end{equation*}
$$

It follows
Theorem 2.2. ([16]) It holds

$$
\begin{equation*}
\int_{-\infty}^{\infty} \phi_{q}(x) d x=1, \quad q, \beta>0 \tag{22}
\end{equation*}
$$

So that ϕ_{q} is a density function on $\mathbb{R} ; q, \beta>0$.
We need the following result
Theorem 2.3. ([16]) Let $0<\alpha<1$, and $n \in \mathbb{N}$ with $n^{1-\alpha}>2 ; q, \beta>0$. Then

$$
\begin{align*}
& \sum_{k=-\infty}^{\infty} \phi_{q}(n x-k)<\max \left\{q, \frac{1}{q}\right\} e^{2 \beta} e^{-\beta n^{(1-\alpha)}}=K e^{-\beta n^{(1-\alpha)}}, \tag{23}\\
& :|n x-k| \geq n^{1-\alpha}
\end{align*}
$$

where $K:=\max \left\{q, \frac{1}{q}\right\} e^{2 \beta}$.
Let $\lceil\cdot\rceil$ the ceiling of the number, and $\lfloor\cdot\rfloor$ the integral part of the number.
We mention the following result:
Theorem 2.4. ([[16]) Let $x \in[a, b] \subset \mathbb{R}$ and $n \in \mathbb{N}$ so that $\lceil n a\rceil \leq\lfloor n b\rfloor$. For $q>0$, we consider the number $\lambda_{q}>z_{0}>0$ with $\phi_{q}\left(z_{0}\right)=\phi_{q}(0)$ and $\beta, \lambda_{q}>1$. Then

$$
\begin{equation*}
\frac{1}{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} \phi_{q}(n x-k)}<\max \left\{\frac{1}{\phi_{q}\left(\lambda_{q}\right)}, \frac{1}{\phi_{\frac{1}{q}}\left(\lambda_{\frac{1}{q}}\right)}\right\}=: \theta(q) \tag{24}
\end{equation*}
$$

We also mention
Remark. ([16]) (i) We have that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} \phi_{q}(n x-k) \neq 1, \text { for at least some } x \in[a, b], \tag{25}
\end{equation*}
$$

where $\beta, q>0$.
(ii) Let $[a, b] \subset \mathbb{R}$. For large n we always have $\lceil n a\rceil \leq\lfloor n b\rfloor$. Also $a \leq \frac{k}{n} \leq b$, iff $\lceil n a\rceil \leq k \leq\lfloor n b\rfloor$. In general it holds

$$
\begin{equation*}
\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} \phi_{q}(n x-k) \leq 1 \tag{26}
\end{equation*}
$$

Let $(X,\|\cdot\|)$ be a Banach space.
Definition 2.1. Let $f \in C([a, b], X)$ and $n \in \mathbb{N}:\lceil n a\rceil \leq\lfloor n b\rfloor$. We introduce and define the X-valued linear neural network operators

$$
\begin{equation*}
H_{n}(f, x):=\frac{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} f\left(\frac{k}{n}\right) \Phi_{q}(n x-k)}{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} \Phi_{q}(n x-k)}, x \in[a, b] ; q, \beta>0 . \tag{27}
\end{equation*}
$$

For large enough n we always obtain $\lceil n a\rceil \leq\lfloor n b\rfloor$. Also $a \leq \frac{k}{n} \leq b$, iff $\lceil n a\rceil \leq k \leq$ $\lfloor n b\rfloor$. The same H_{n} is used for real valued functions. We study here the pointwise and uniform convergence of $H_{n}(f, x)$ to $f(x)$ with rates.

For convenience, also we call

$$
\begin{equation*}
H_{n}^{*}(f, x):=\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} f\left(\frac{k}{n}\right) \Phi_{q}(n x-k), \tag{28}
\end{equation*}
$$

(the same H_{n}^{*} can be defined for real valued functions) that is

$$
\begin{equation*}
H_{n}(f, x):=\frac{H_{n}^{*}(f, x)}{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} \Phi_{q}(n x-k)} . \tag{29}
\end{equation*}
$$

So that

$$
\begin{gather*}
H_{n}(f, x)-f(x)=\frac{H_{n}^{*}(f, x)}{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} \Phi_{q}(n x-k)}-f(x)= \tag{30}\\
\frac{H_{n}^{*}(f, x)-f(x)\left(\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} \Phi_{q}(n x-k)\right)}{\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} \Phi_{q}(n x-k)} .
\end{gather*}
$$

Consequently, we derive that

$$
\begin{gather*}
\left\|H_{n}(f, x)-f(x)\right\| \leq \theta(q)\left\|H_{n}^{*}(f, x)-f(x)\left(\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor} \Phi_{q}(n x-k)\right)\right\|= \\
\theta(q)\left\|\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor}\left(f\left(\frac{k}{n}\right)-f(x)\right) \Phi_{q}(n x-k)\right\| \tag{31}
\end{gather*}
$$

where $\theta(q)$ as in 24.
We will estimate the right hand side of the last quantity.
For that we need, for $f \in C([a, b], X)$ the first modulus of continuity

$$
\begin{align*}
\omega_{1}(f, \delta):= & \sup ^{x, y \in[a, b]} \text { }\|f(x)-f(y)\|, \delta>0 . \tag{32}\\
& |x-y| \leq \delta
\end{align*}
$$

Similarly, it is defined ω_{1} for $f \in C_{u B}(\mathbb{R}, X)$ (uniformly continuous and bounded functions from \mathbb{R} into X), for $f \in C_{B}(\mathbb{R}, X)$ (continuous and bounded X-valued), and for $f \in C_{u}(\mathbb{R}, X)$ (uniformly continuous).

The fact $f \in C([a, b], X)$ or $f \in C_{u}(\mathbb{R}, X)$, is equivalent to $\lim _{\delta \rightarrow 0} \omega_{1}(f, \delta)=0$, see [11].

We make
Definition 2.2. When $f \in C_{u B}(\mathbb{R}, X)$, or $f \in C_{B}(\mathbb{R}, X)$, we define

$$
\begin{equation*}
\overline{H_{n}}(f, x):=\sum_{k=-\infty}^{\infty} f\left(\frac{k}{n}\right) \Phi_{q}(n x-k) \tag{33}
\end{equation*}
$$

$n \in \mathbb{N}, x \in \mathbb{R}$, the X-valued quasi-interpolation neural network operator.
We give
Remark. We have that

$$
\left\|f\left(\frac{k}{n}\right)\right\| \leq\|f\|_{\infty, \mathbb{R}}<+\infty
$$

and

$$
\begin{equation*}
\left\|f\left(\frac{k}{n}\right)\right\| \Phi_{q}(n x-k) \leq\|f\|_{\infty, \mathbb{R}} \Phi_{q}(n x-k) \tag{34}
\end{equation*}
$$

and

$$
\sum_{k=-\lambda}^{\lambda}\left\|f\left(\frac{k}{n}\right)\right\| \Phi_{q}(n x-k) \leq\|f\|_{\infty, \mathbb{R}}\left(\sum_{k=-\lambda}^{\lambda} \Phi_{q}(n x-k)\right)
$$

and finally

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty}\left\|f\left(\frac{k}{n}\right)\right\| \Phi_{q}(n x-k) \leq\|f\|_{\infty, \mathbb{R}} \tag{35}
\end{equation*}
$$

a convergent series in \mathbb{R}.
So, the series $\sum_{k=-\infty}^{\infty}\left\|f\left(\frac{k}{n}\right)\right\| \Phi_{q}(n x-k)$ is absolutely convergent in X, hence it is convergent in X and $\overline{H_{n}}(f, x) \in X$. We denote by $\|f\|_{\infty}:=\sup _{x \in[a, b]}\|f(x)\|$, for $f \in$ $C([a, b], X)$, similarly it is defined for $f \in C_{B}(\mathbb{R}, X)$.

3. Main Results

We present a set of X-valued neural network approximations to a function given with rates.

Theorem 3.1. Let $f \in C([a, b], X), 0<\alpha<1, n \in \mathbb{N}: n^{1-\alpha}>2, q, \beta>0, x \in[a, b]$. Then
i)

$$
\begin{equation*}
\left\|H_{n}(f, x)-f(x)\right\| \leq \theta(q)\left[\omega_{1}\left(f, \frac{1}{n^{\alpha}}\right)+2\|f\|_{\infty} K e^{-\beta n^{(1-\alpha)}}\right]=: \tau \tag{36}
\end{equation*}
$$

where K as in (23),
and
ii)

$$
\begin{equation*}
\left\|H_{n}(f)-f\right\|_{\infty} \leq \tau \tag{37}
\end{equation*}
$$

We get that $\lim _{n \rightarrow \infty} H_{n}(f)=f$, pointwise and uniformly.
Proof. We see that

$$
\begin{gathered}
\left\|\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor}\left(f\left(\frac{k}{n}\right)-f(x)\right) \Phi_{q}(n x-k)\right\| \leq \\
\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor}\left\|f\left(\frac{k}{n}\right)-f(x)\right\| \Phi_{q}(n x-k)=
\end{gathered}
$$

$$
\begin{align*}
& \left\{\begin{array}{l}
\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor}\left\|f\left(\frac{k}{n}\right)-f(x)\right\| \Phi_{q}(n x-k)+ \\
\left|\frac{k}{n}-x\right| \leq \frac{1}{n^{\alpha}}
\end{array}\right. \\
& \left\{\begin{array}{l}
\sum_{\substack{k=\lceil n a\rceil \\
\left|\frac{k}{n}-x\right|>\frac{1}{n^{\alpha}}}}^{\lfloor n b\rfloor}\left\|f\left(\frac{k}{n}\right)-f(x)\right\| \Phi_{q}(n x-k) \leq
\end{array}\right. \tag{38}\\
& \begin{array}{l}
\sum^{\lfloor n b\rfloor} \omega_{1}\left(f,\left|\frac{k}{n}-x\right|\right) \Phi_{q}(n x-k)+ \\
-x \left\lvert\, \leq \frac{1}{n^{\alpha}}\right.
\end{array} \\
& 2\|f\|_{\infty} \sum_{\left\{\begin{array}{l}
k=\lceil n a\rceil \\
|k-n x|>n^{1-\alpha}
\end{array}\right.}^{\lfloor\lfloor n b\rfloor} \Phi_{q}(n x-k) \leq \\
& \omega_{1}\left(f, \frac{1}{n^{\alpha}}\right)\left\{\begin{array}{l}
\sum_{k=-\infty}^{\infty} \Phi_{q}(n x-k)+ \\
\left|\frac{k}{n}-x\right| \leq \frac{1}{n^{\alpha}}
\end{array}\right. \\
& 2\|f\|_{\infty} \sum_{\substack{\infty}} \Phi_{q}(n x-k) \underset{\text { (by Theorem[2.3] }}{\leq} \\
& \omega_{1}\left(f, \frac{1}{n^{\alpha}}\right)+2\|f\|_{\infty} K e^{-\beta n^{(1-\alpha)}} \tag{39}
\end{align*}
$$

That is

$$
\begin{gather*}
\left\|\sum_{k=\lceil n a\rceil}^{\lfloor n b\rfloor}\left(f\left(\frac{k}{n}\right)-f(x)\right) \Phi_{q}(n x-k)\right\| \leq \\
\omega_{1}\left(f, \frac{1}{n^{\alpha}}\right)+2\|f\|_{\infty} K e^{-\beta n^{(1-\alpha)}} . \tag{40}
\end{gather*}
$$

Using the last equality we derive 3 .

Next we give
Theorem 3.2. Let $f \in C_{B}(\mathbb{R}, X), 0<\alpha<1, q, \beta>0, n \in \mathbb{N}: n^{1-\alpha}>2, x \in \mathbb{R}$. Then
i)

$$
\begin{equation*}
\left\|\bar{H}_{n}(f, x)-f(x)\right\| \leq \omega_{1}\left(f, \frac{1}{n^{\alpha}}\right)+2\|f\|_{\infty} K e^{-\beta n^{(1-\alpha)}}=: \gamma \tag{41}
\end{equation*}
$$

and
ii)

$$
\begin{equation*}
\left\|\bar{H}_{n}(f)-f\right\|_{\infty} \leq \gamma . \tag{42}
\end{equation*}
$$

For $f \in C_{u B}(\mathbb{R}, X)$ we get $\lim _{n \rightarrow \infty} \bar{H}_{n}(f)=f$, pointwise and uniformly.

Proof. We observe that

$$
\begin{align*}
& \left\|\bar{H}_{n}(f, x)-f(x)\right\| \stackrel{\boxed{17}}{=}\left\|\sum_{k=-\infty}^{\infty} f\left(\frac{k}{n}\right) \Phi_{q}(n x-k)-f(x) \sum_{k=-\infty}^{\infty} \Phi_{q}(n x-k)\right\|= \\
& \left\|\sum_{k=-\infty}^{\infty}\left(f\left(\frac{k}{n}\right)-f(x)\right) \Phi_{q}(n x-k)\right\| \leq \\
& \sum_{k=-\infty}^{\infty}\left\|f\left(\frac{k}{n}\right)-f(x)\right\| \Phi_{q}(n x-k)= \\
& \left\{\begin{array}{l}
\sum_{\substack{k=-\infty \\
\left|\frac{k}{n}-x\right| \leq \frac{1}{n^{\alpha}}}}^{\infty}\left\|f\left(\frac{k}{n}\right)-f(x)\right\| \Phi_{q}(n x-k)+ \\
\end{array}\right. \\
& \left\{\begin{array}{l}
\sum_{\substack{k=-\infty \\
\left|\frac{k}{n}-x\right|>\frac{1}{n^{\alpha}}}}^{\infty}\left\|f\left(\frac{k}{n}\right)-f(x)\right\| \Phi_{q}(n x-k) \leq \\
\end{array}\right. \tag{43}\\
& \left\{\begin{array}{l}
\sum_{k=-\infty}^{\infty} \omega_{1}\left(f,\left|\frac{k}{n}-x\right|\right) \Phi_{q}(n x-k)+ \\
\left|\frac{k}{n}-x\right| \leq \frac{1}{n^{\alpha}}
\end{array}\right. \\
& \begin{array}{l}
2\|f\|_{\infty} \sum_{\left\{\begin{array}{l}
k=-\infty \\
\left|\frac{k}{n}-x\right|>\frac{1}{n^{\alpha}}
\end{array}\right.} \Phi_{q}(n x-k) \leq
\end{array} \\
& \omega_{1}\left(f, \frac{1}{n^{\alpha}}\right)\left\{\begin{array}{l}
\sum_{k=-\infty}^{\infty} \Phi_{q}(n x-k)+2\|f\|_{\infty} K e^{-\beta n^{(1-\alpha)}} \leq \\
\left|\frac{k}{n}-x\right| \leq \frac{1}{n^{\alpha}}
\end{array}\right. \\
& \omega_{1}\left(f, \frac{1}{n^{\alpha}}\right)+2\|f\|_{\infty} K e^{-\beta n^{(1-\alpha)}}, \tag{44}
\end{align*}
$$

proving the claim.

We need the X-valued Taylor's formula in an appropiate form:
Theorem 3.3. ([[10], [12]) Let $N \in \mathbb{N}$, and $f \in C^{N}([a, b], X)$, where $[a, b] \subset \mathbb{R}$ and X is a Banach space. Let any $x, y \in[a, b]$. Then

$$
\begin{equation*}
f(x)=\sum_{i=0}^{N} \frac{(x-y)^{i}}{i!} f^{(i)}(y)+\frac{1}{(N-1)!} \int_{y}^{x}(x-t)^{N-1}\left(f^{(N)}(t)-f^{(N)}(y)\right) d t \tag{45}
\end{equation*}
$$

The derivatives $f^{(i)}, i \in \mathbb{N}$, are defined like the numerical ones, see [24], p. 83. The integral \int_{y}^{x} in 45 is of Bochner type, see [22].

By [12], [20] we have that: if $f \in C([a, b], X)$, then $f \in L_{\infty}([a, b], X)$ and $f \in$ $L_{1}([a, b], X)$.

In the next we discuss high order neural network X-valued approximation by using the smoothness of f.
Theorem 3.4. Let $f \in C^{N}([a, b], X), n, N \in \mathbb{N}, q, \beta>0,0<\alpha<1, x \in[a, b]$ and $n^{1-\alpha}>2$. Then
i)

$$
\begin{gather*}
\left\|H_{n}(f, x)-f(x)\right\| \leq \theta(q)\left\{\sum_{j=1}^{N} \frac{\left\|f^{(j)}(x)\right\|}{j!}\left[\frac{1}{n^{\alpha j}}+(b-a)^{j} K e^{-\beta n^{(1-\alpha)}}\right]+\right. \tag{46}\\
\left.\left[\omega_{1}\left(f^{(N)}, \frac{1}{n^{\alpha}}\right) \frac{1}{n^{\alpha N} N!}+\frac{2\left\|f^{(N)}\right\|_{\infty}(b-a)^{N}}{N!} K e^{-\beta n^{(1-\alpha)}}\right]\right\},
\end{gather*}
$$

ii) assume further $f^{(j)}\left(x_{0}\right)=0, j=1, \ldots, N$, for some $x_{0} \in[a, b]$, it holds

$$
\begin{gather*}
\left\|H_{n}\left(f, x_{0}\right)-f\left(x_{0}\right)\right\| \leq \theta(q) \\
\left\{\omega_{1}\left(f^{(N)}, \frac{1}{n^{\alpha}}\right) \frac{1}{n^{\alpha N} N!}+\frac{2\left\|f^{(N)}\right\|_{\infty}(b-a)^{N}}{N!} K e^{-\beta n^{(1-\alpha)}}\right\} \tag{47}
\end{gather*}
$$

and
iii)

$$
\begin{gather*}
\left\|H_{n}(f)-f\right\|_{\infty} \leq \theta(q)\left\{\sum_{j=1}^{N} \frac{\left\|f^{(j)}\right\|_{\infty}}{j!}\left[\frac{1}{n^{\alpha j}}+(b-a)^{j} K e^{-\beta n^{(1-\alpha)}}\right]+\right. \\
\left.\left[\omega_{1}\left(f^{(N)}, \frac{1}{n^{\alpha}}\right) \frac{1}{n^{\alpha N} N!}+2\left\|f^{(N)}\right\|_{\infty}(b-a)^{N} K e^{-\beta n^{(1-\alpha)}}\right]\right\} . \tag{48}
\end{gather*}
$$

Again we obtain $\lim _{n \rightarrow \infty} H_{n}(f)=f$, pointwise and uniformly.
Proof. It is lengthy, and as similar to [15] is omitted.
All integrals from now on are of Bochner type [22].
We need
Definition 3.1. ([[12]) Let $[a, b] \subset \mathbb{R}, X$ be a Banach space, $\alpha>0 ; m=\lceil\alpha\rceil \in \mathbb{N}$, $(\lceil\cdot\rceil$ is the ceiling of the number), $f:[a, b] \rightarrow X$. We assume that $f^{(m)} \in L_{1}([a, b], X)$. We call the Caputo-Bochner left fractional derivative of order α :

$$
\begin{equation*}
\left(D_{* a}^{\alpha} f\right)(x):=\frac{1}{\Gamma(m-\alpha)} \int_{a}^{x}(x-t)^{m-\alpha-1} f^{(m)}(t) d t, \quad \forall x \in[a, b] \tag{49}
\end{equation*}
$$

If $\alpha \in \mathbb{N}$, we set $D_{* a}^{\alpha} f:=f^{(m)}$ the ordinary X-valued derivative (defined similar to numerical one, see [24], p. 83), and also set $D_{* a}^{0} f:=f$.

By [12], $\left(D_{* a}^{\alpha} f\right)(x)$ exists almost everywhere in $x \in[a, b]$ and $D_{* a}^{\alpha} f \in L_{1}([a, b], X)$.
If $\left\|f^{(m)}\right\|_{L_{\infty}([a, b], X)}<\infty$, then by [12], $D_{* a}^{\alpha} f \in C([a, b], X)$, hence $\left\|D_{* a}^{\alpha} f\right\| \in$ $C([a, b])$.

We mention
Definition 3.2. ([10]) Let $[a, b] \subset \mathbb{R}, X$ be a Banach space, $\alpha>0, m:=\lceil\alpha\rceil$. We assume that $f^{(m)} \in L_{1}([a, b], X)$, where $f:[a, b] \rightarrow X$. We call the Caputo-Bochner right fractional derivative of order α :

$$
\begin{equation*}
\left(D_{b-}^{\alpha} f\right)(x):=\frac{(-1)^{m}}{\Gamma(m-\alpha)} \int_{x}^{b}(z-x)^{m-\alpha-1} f^{(m)}(z) d z, \quad \forall x \in[a, b] \tag{50}
\end{equation*}
$$

We observe that $\left(D_{b-}^{m} f\right)(x)=(-1)^{m} f^{(m)}(x)$, for $m \in \mathbb{N}$, and $\left(D_{b-}^{0} f\right)(x)=f(x)$.
By [10], $\left(D_{b-}^{\alpha} f\right)(x)$ exists almost everywhere on $[a, b]$ and $\left(D_{b-}^{\alpha} f\right) \in L_{1}([a, b], X)$.
If $\left\|f^{(m)}\right\|_{L_{\infty}([a, b], X)}<\infty$, and $\alpha \notin \mathbb{N}$, by [10], $D_{b-}^{\alpha} f \in C([a, b], X)$, hence $\left\|D_{b-}^{\alpha} f\right\| \in C([a, b])$.

We make
Remark. ([11]) Let $f \in C^{n-1}([a, b]), f^{(n)} \in L_{\infty}([a, b]), n=\lceil\nu\rceil, \nu>0, \nu \notin \mathbb{N}$. Then

$$
\begin{equation*}
\left\|D_{* a}^{\nu} f(x)\right\| \leq \frac{\left\|f^{(n)}\right\|_{L_{\infty}([a, b], X)}}{\Gamma(n-\nu+1)}(x-a)^{n-\nu}, \forall x \in[a, b] \tag{51}
\end{equation*}
$$

Thus we observe

$$
\begin{gather*}
\omega_{1}\left(D_{* a}^{\nu} f, \delta\right)=\sup _{\substack{x, y \in[a, b] \\
|x-y| \leq \delta}}\left\|D_{* a}^{\nu} f(x)-D_{* a}^{\nu} f(y)\right\| \leq \tag{52}\\
\sup _{\substack{x, y \in[a, b] \\
|x-y| \leq \delta}}\left(\frac{\left\|f^{(n)}\right\|_{L_{\infty}([a, b], X)}}{\Gamma(n-\nu+1)}(x-a)^{n-\nu}+\frac{\left\|f^{(n)}\right\|_{L_{\infty}([a, b], X)}}{\Gamma(n-\nu+1)}(y-a)^{n-\nu}\right) \\
\leq \frac{2\left\|f^{(n)}\right\|_{L_{\infty}([a, b], X)}}{\Gamma(n-\nu+1)}(b-a)^{n-\nu}
\end{gather*}
$$

Consequently

$$
\begin{equation*}
\omega_{1}\left(D_{* a}^{\nu} f, \delta\right) \leq \frac{2\left\|f^{(n)}\right\|_{L_{\infty}([a, b], X)}}{\Gamma(n-\nu+1)}(b-a)^{n-\nu} . \tag{53}
\end{equation*}
$$

Similarly, let $f \in C^{m-1}([a, b]), f^{(m)} \in L_{\infty}([a, b]), m=\lceil\alpha\rceil, \alpha>0, \alpha \notin \mathbb{N}$, then

$$
\begin{equation*}
\omega_{1}\left(D_{b-}^{\alpha} f, \delta\right) \leq \frac{2\left\|f^{(m)}\right\|_{L_{\infty}([a, b], X)}}{\Gamma(m-\alpha+1)}(b-a)^{m-\alpha} \tag{54}
\end{equation*}
$$

So for $f \in C^{m-1}([a, b]), f^{(m)} \in L_{\infty}([a, b]), m=\lceil\alpha\rceil, \alpha>0, \alpha \notin \mathbb{N}$, we find

$$
\begin{equation*}
\sup _{x_{0} \in[a, b]} \omega_{1}\left(D_{* x_{0}}^{\alpha} f, \delta\right)_{\left[x_{0}, b\right]} \leq \frac{2\left\|f^{(m)}\right\|_{L_{\infty}([a, b], X)}}{\Gamma(m-\alpha+1)}(b-a)^{m-\alpha}, \tag{55}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{x_{0} \in[a, b]} \omega_{1}\left(D_{x_{0}-}^{\alpha} f, \delta\right)_{\left[a, x_{0}\right]} \leq \frac{2\left\|f^{(m)}\right\|_{L_{\infty}([a, b], X)}}{\Gamma(m-\alpha+1)}(b-a)^{m-\alpha} . \tag{56}
\end{equation*}
$$

By [12] we get that $D_{* x_{0}}^{\alpha} f \in C\left(\left[x_{0}, b\right], X\right)$, and by [10] we obtain that $D_{x_{0}-}^{\alpha} f \in$ $C\left(\left[a, x_{0}\right], X\right)$.

We present the following X-valued fractional approximation result by neural networks.
Theorem 3.5. Let $\alpha>0, q, \beta>0, N=\lceil\alpha\rceil, \alpha \notin \mathbb{N}, f \in C^{N}([a, b], X), 0<\beta^{*}<1$, $x \in[a, b], n \in \mathbb{N}: n^{1-\beta^{*}}>2$. Then
i)

$$
\begin{gathered}
\left\|H(f, x)-\sum_{j=1}^{N-1} \frac{f^{(j)}(x)}{j!} H_{n}\left((\cdot-x)^{j}\right)(x)-f(x)\right\| \leq \\
\frac{\theta(q)}{\Gamma(\alpha+1)}\left\{\frac{\left(\omega_{1}\left(D_{x-}^{\alpha} f, \frac{1}{n^{\beta^{*}}}\right)_{[a, x]}+\omega_{1}\left(D_{* x}^{\alpha} f, \frac{1}{n^{\beta^{*}}}\right)_{[x, b]}\right)}{n^{\alpha \beta^{*}}}+\right.
\end{gathered}
$$

$$
\begin{equation*}
\left.K e^{-\beta n^{\left(1-\beta^{*}\right)}}\left(\left\|D_{x-}^{\alpha} f\right\|_{\infty,[a, x]}(x-a)^{\alpha}+\left\|D_{* x}^{\alpha} f\right\|_{\infty,[x, b]}(b-x)^{\alpha}\right)\right\} \tag{57}
\end{equation*}
$$

ii) if $f^{(j)}(x)=0$, for $j=1, \ldots, N-1$, we have

$$
\begin{gather*}
\left\|H_{n}(f, x)-f(x)\right\| \leq \frac{\theta(q)}{\Gamma(\alpha+1)} \\
\left\{\frac{\left(\omega_{1}\left(D_{x-}^{\alpha} f, \frac{1}{n^{\beta^{*}}}\right)_{[a, x]}+\omega_{1}\left(D_{* x}^{\alpha} f, \frac{1}{n^{\beta^{*}}}\right)_{[x, b]}\right)}{n^{\alpha \beta^{*}}}+\right. \\
\left.K e^{-\beta n^{\left(1-\beta^{*}\right)}}\left(\left\|D_{x-}^{\alpha} f\right\|_{\infty,[a, x]}(x-a)^{\alpha}+\left\|D_{* x}^{\alpha} f\right\|_{\infty,[x, b]}(b-x)^{\alpha}\right)\right\}, \tag{58}
\end{gather*}
$$

iii)

$$
\begin{gather*}
\left\|H_{n}(f, x)-f(x)\right\| \leq \theta(q) \\
\left\{\sum_{j=1}^{N-1} \frac{\left\|f^{(j)}(x)\right\|}{j!}\left\{\frac{1}{n^{\beta^{*} j}}+(b-a)^{j} K e^{-\beta n^{\left(1-\beta^{*}\right)}}\right\}+\right. \\
\frac{1}{\Gamma(\alpha+1)}\left\{\frac{\left(\omega_{1}\left(D_{x-}^{\alpha} f, \frac{1}{n^{\beta^{*}}}\right)_{[a, x]}+\omega_{1}\left(D_{* x}^{\alpha} f, \frac{1}{n^{\beta^{*}}}\right)_{[x, b]}\right)}{n^{\alpha \beta^{*}}}+\right. \\
\left.\left.K e^{-\beta n^{\left(1-\beta^{*}\right)}}\left(\left\|D_{x-}^{\alpha} f\right\|_{\infty,[a, x]}(x-a)^{\alpha}+\left\|D_{* x}^{\alpha} f\right\|_{\infty,[x, b]}(b-x)^{\alpha}\right)\right\}\right\} \tag{59}
\end{gather*}
$$

$\forall x \in[a, b]$,
and
iv)

$$
\begin{gather*}
\left\|H_{n} f-f\right\|_{\infty} \leq \theta(q) \\
\frac{\sum_{j=1}^{N-1} \frac{\left\|f^{(j)}\right\|_{\infty}}{j!}\left\{\frac{1}{n^{\beta^{*} j}}+(b-a)^{j} K e^{-\beta n^{\left(1-\beta^{*}\right)}}\right\}+}{\Gamma(\alpha+1)}\left\{\frac{\left(\sup _{x \in[a, b]} \omega_{1}\left(D_{x-}^{\alpha} f, \frac{1}{n^{\beta^{*}}}\right)_{[a, x]}+\sup _{x \in[a, b]} \omega_{1}\left(D_{* x}^{\alpha} f, \frac{1}{n^{\beta^{*}}}\right)_{[x, b]}\right)}{n^{\alpha \beta^{*}}}+\right. \\
\left.\left.K e^{-\beta n^{\left(1-\beta^{*}\right)}}(b-a)^{\alpha}\left(\sup _{x \in[a, b]}\left\|D_{x-}^{\alpha} f\right\|_{\infty,[a, x]}+\sup _{x \in[a, b]}\left\|D_{* x}^{\alpha} f\right\|_{\infty,[x, b]}\right)\right\}\right\}
\end{gather*}
$$

Above, when $N=1$ the sum $\sum_{j=1}^{N-1} \cdot=0$.
As we see here we obtain X-valued fractionally type pointwise and uniform convergence with rates of $H_{n} \rightarrow I$ the unit operator, as $n \rightarrow \infty$.

Proof. The proof is very lengtly and similar to [15], as such is omitted.

Next we apply Theorem 3.5 for $N=1$.
Theorem 3.6. Let $0<\alpha, \beta^{*}<1, q, \beta>0, f \in C^{1}([a, b], X), x \in[a, b], n \in \mathbb{N}$: $n^{1-\beta^{*}}>2$. Then
i)

$$
\left\|H_{n}(f, x)-f(x)\right\| \leq
$$

$$
\begin{gather*}
\frac{\theta(q)}{\Gamma(\alpha+1)}\left\{\frac{\left(\omega_{1}\left(D_{x-}^{\alpha} f, \frac{1}{n^{\beta^{*}}}\right)_{[a, x]}+\omega_{1}\left(D_{* x}^{\alpha} f, \frac{1}{n^{\beta^{*}}}\right)_{[x, b]}\right)}{n^{\alpha \beta^{*}}}+\right. \\
\left.K e^{-\beta n^{\left(1-\beta^{*}\right)}}\left(\left\|D_{x-}^{\alpha} f\right\|_{\infty,[a, x]}(x-a)^{\alpha}+\left\|D_{* x}^{\alpha} f\right\|_{\infty,[x, b]}(b-x)^{\alpha}\right)\right\}, \tag{61}
\end{gather*}
$$

and
ii)

$$
\begin{gather*}
\left\|H_{n} f-f\right\|_{\infty} \leq \frac{\theta(q)}{\Gamma(\alpha+1)} \\
\left\{\frac{\left(\sup _{x \in[a, b]} \omega_{1}\left(D_{x-}^{\alpha} f, \frac{1}{n^{\beta^{*}}}\right)_{[a, x]}+\sup _{x \in[a, b]} \omega_{1}\left(D_{* x}^{\alpha} f, \frac{1}{n^{\beta^{*}}}\right)_{[x, b]}\right)}{n^{\alpha \beta^{*}}}+\right. \\
\left.(b-a)^{\alpha} K e^{-\beta n^{\left(1-\beta^{*}\right)}}\left(\sup _{x \in[a, b]}\left\|D_{x-}^{\alpha} f\right\|_{\infty,[a, x]}+\sup _{x \in[a, b]}\left\|D_{* x}^{\alpha} f\right\|_{\infty,[x, b]}\right)\right\} \tag{62}
\end{gather*}
$$

When $\alpha=\frac{1}{2}$ we derive
Corollary 3.7. Let $0<\beta^{*}<1, q, \beta>0, f \in C^{1}([a, b], X), x \in[a, b], n \in \mathbb{N}: n^{1-\beta^{*}}>$ 2. Then
i)

$$
\begin{gather*}
\left\|H_{n}(f, x)-f(x)\right\| \leq \\
\frac{2 \theta(q)}{\sqrt{\pi}}\left\{\frac{\left(\omega_{1}\left(D_{x-}^{\frac{1}{2}} f, \frac{1}{n^{\beta^{*}}}\right)_{[a, x]}+\omega_{1}\left(D_{* x}^{\frac{1}{2}} f, \frac{1}{n^{\beta^{*}}}\right)_{[x, b]}\right)}{n^{\frac{\beta^{*}}{2}}}+\right. \\
\left.K e^{-\beta n^{\left(1-\beta^{*}\right)}}\left(\left\|D_{x-}^{\frac{1}{2}} f\right\|_{\infty,[a, x]} \sqrt{(x-a)}+\left\|D_{* x}^{\frac{1}{2}} f\right\|_{\infty,[x, b]} \sqrt{(b-x)}\right)\right\}, \tag{63}
\end{gather*}
$$

and

$$
\begin{gather*}
\text { ii) } \\
\left\{\begin{array}{c}
\left\|H_{n} f-f\right\|_{\infty} \leq \frac{2 \theta(q)}{\sqrt{\pi}} \\
\left.\sup _{x \in[a, b]} \omega_{1}\left(D_{x-}^{\frac{1}{2}} f, \frac{1}{n^{\beta^{*}}}\right)_{[a, x]}+\sup _{x \in[a, b]} \omega_{1}\left(D_{* x}^{\frac{1}{2}} f, \frac{1}{n^{\beta^{*}}}\right)_{[x, b]}\right) \\
n^{\frac{\beta^{*}}{2}}
\end{array}\right. \\
\left.\sqrt{(b-a)} K e^{-\beta n^{\left(1-\beta^{*}\right)}}\left(\sup _{x \in[a, b]}\left\|D_{x-}^{\frac{1}{2}} f\right\|_{\infty,[a, x]}+\sup _{x \in[a, b]}\left\|D_{* x}^{\frac{1}{2}} f\right\|_{\infty,[x, b]}\right)\right\}<\infty
\end{gather*}
$$

We make

Remark. Some convergence analysis follows based on Corollary 3.7

Let $0<\beta^{*}<1, \lambda>0, f \in C^{1}([a, b], X), x \in[a, b], n \in \mathbb{N}: n^{1-\beta^{*}}>2$. We elaborate on (64). Assume that

$$
\begin{equation*}
\omega_{1}\left(D_{x-}^{\frac{1}{2}} f, \frac{1}{n^{\beta^{*}}}\right)_{[a, x]} \leq \frac{R_{1}}{n^{\beta^{*}}}, \tag{65}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{1}\left(D_{* x}^{\frac{1}{2}} f, \frac{1}{n^{\beta^{*}}}\right)_{[x, b]} \leq \frac{R_{2}}{n^{\beta^{*}}} \tag{66}
\end{equation*}
$$

$\forall x \in[a, b], \forall n \in \mathbb{N}$, where $R_{1}, R_{2}>0$.
Then it holds

$$
\begin{gather*}
\frac{\left[\sup _{x \in[a, b]} \omega_{1}\left(D_{x-}^{\frac{1}{2}} f, \frac{1}{n^{\beta^{*}}}\right)_{[a, x]}+\sup _{x \in[a, b]} \omega_{1}\left(D_{* x}^{\frac{1}{2}} f, \frac{1}{n^{\beta^{*}}}\right)_{[x, b]}\right]}{n^{\frac{\beta^{*}}{2}}} \leq \\
\frac{\frac{\left(R_{1}+R_{2}\right)}{n^{\beta^{*}}}}{n^{\frac{\beta^{*}}{2}}}=\frac{\left(R_{1}+R_{2}\right)}{n^{\frac{3 \beta^{*}}{2}}}=\frac{R}{n^{\frac{3 \beta^{*}}{2}}}, \tag{67}
\end{gather*}
$$

where $R:=R_{1}+R_{2}>0$.
The other summand of the right hand side of (64), for large enough n, converges to zero at the speed $e^{-\beta n^{\left(1-\beta^{*}\right)}}$, so it is about $A e^{-\beta n^{\left(1-\beta^{*}\right)}}$, where $A>0$ is a constant.

Then, for large enough $n \in \mathbb{N}$, by (64), (67) and the above comment, we obtain that

$$
\begin{equation*}
\left\|H_{n} f-f\right\|_{\infty} \leq \frac{B}{n^{\frac{3 \beta^{*}}{2}}}, \tag{68}
\end{equation*}
$$

where $B>0$, converging to zero at the high speed of $\frac{1}{n^{\frac{3 \beta^{*}}{2}}}$.
In Theorem 3.1] for $f \in C([a, b], X)$ and for large enough $n \in \mathbb{N}$, the speed is $\frac{1}{n^{\beta^{*}}}$. So by (68), $\left\|H_{n} f-f\right\|_{\infty}$ converges much faster to zero. The last comes because we assumed differentiability of f. Notice that in Corollary 3.7 no initial condition is assumed.

REFERENCES

[1] G.A. Anastassiou, Rate of convergence of some neural network operators to the unit-univariate case, J. Math. Anal. Appl, 212 (1997), 237-262.
[2] G.A. Anastassiou, Quantitative Approximations, Chapman \& Hall / CRC, Boca Raton, New York, 2001.
[3] G.A. Anastassiou, Univariate hyperbolic tangent neural network approximation, Mathematics and Computer Modelling, 53 (2011), 1111-1132.
[4] G.A. Anastassiou, Multivariate hyperbolic tangent neural network approximation, Computers and Mathematics, 61 (2011), 809-821.
[5] G.A. Anastassiou, Multivariate sigmoidal neural network approximation, Neural Networks, 24 (2011), 378386.
[6] G.A. Anastassiou, Inteligent Systems: Approximation by Artificial Neural Networks, Intelligent Systems Reference Library, Vol. 19, Springer, Heidelberg, 2011.
[7] G.A. Anastassiou, Univariate sigmoidal neural network approximation, J. of Computational Analysis and Applications, Vol. 14, No. 4, 2012, 659-690.
[8] G.A. Anastassiou, Fractional neural network approximation, Computers and Mathematics with Applications, 64 (2012), 1655-1676.
[9] G.A. Anastassiou, Intelligent Systems II: Complete Approximation by Neural Network Operators, Springer, Heidelberg, New York, 2016.
[10] G.A. Anastassiou, Strong Right Fractional Calculus for Banach space valued functions, 'Revista Proyecciones, Vol. 36, No. 1 (2017), 149-186.
[11] G.A. Anastassiou, Vector fractional Korovkin type Approximations, Dynamic Systems and Applications, 26(2017), 81-104.
[12] G.A. Anastassiou, A strong Fractional Calculus Theory for Banach space valued functions, Nonlinear Functional Analysis and Applications (Korea), 22(3) (2017), 495-524.
[13] G.A. Anastassiou, Nonlinearity: Ordinary and Fractional Approximations by Sublinear and Max-Product Operators, Springer, Heidelberg, New York, 2018.
[14] G.A. Anastassiou, General sigmoid based Banach space valued neural network approximation, J. of Computational Analysis and Applications, 31(4) (2023), 520-534.
[15] G.A. Anastassiou, S. Karateke, Parametrized hyperbolic tangent induced Banach space valued ordinary and fractional neural network approximation, Progr. Fract. Differ. Appl., accepted, 2022.
[16] G.A. Anastassiou, q-Deformed and parametrized half hyperbolic tangent based Banach space valued multivariate multi layer neural network approximations, submitted for publication, 2022.
[17] Z. Chen and F. Cao, The approximation operators with sigmoidal functions, Computers and Mathematics with Applications, 58 (2009), 758-765.
[18] S.A. El-Shehawy, E.A-B. Abdel-Salam, The q-deformed hyperbolic Secant family, Intern. J. of Applied Math. \& Stat., 29 (5) (2012), 51-62.
[19] S. Haykin, Neural Networks: A Comprehensive Foundation (2 ed.), Prentice Hall, New York, 1998.
[20] M. Kreuter, Sobolev Spaces of Vector-valued functions, Ulm Univ., Master Thesis in Math., Ulm, Germany, 2015.
[21] W. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biophysis, 7 (1943), 115-133.
[22] J. Mikusinski, The Bochner integral, Academic Press, New York, 1978.
[23] T.M. Mitchell, Machine Learning, WCB-McGraw-Hill, New York, 1997.
[24] G.E. Shilov, Elementary Functional Analysis, Dover Publications, Inc., New York, 1996.
George A. Anastassiou
Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, U.S.A.
Email address: ganastss@memphis.edu

[^0]: 2010 Mathematics Subject Classification. 26A33, 41A17, 41A25, 41A30, 46B25.
 Key words and phrases. q-deformed and β-parametrized half hyperbolic tangent function, Banach space valued neural network approximation, Banach space valued quasi-interpolation operator, modulus of continuity, Banach space valued Caputo fractional derivative, Banach space valued fractional approximation.

 Received: January 25, 2023. Accepted: February 25, 2023. Published: March 31, 2023.

