ON \textit{m}\text{-EXPANSIVE AND m\text{-CONTRACTIVE TUPLE OF OPERATORS IN HILBERT SPACES}

NAEEM AHMAD

\textbf{Abstract.} In this paper we introduce and studied the concept of joint \textit{m}\text{-expansive and joint \textit{m}\text{-contractive tuples of commuting operators of a Hilbert space.}

1. INTRODUCTION

In this paper \(\mathcal{H}\) will denote a infinite-dimensional Hilbert space on \(\mathbb{K} = \mathbb{C}\) (the complex plane). \(\mathbb{N}\) is the set of positive integers and \(\mathbb{Z}_{+} = \mathbb{N} \cup \{0\}\). Let \(\mathcal{B}(\mathcal{H})\) be the set of bounded linear operators from \(\mathcal{H}\) into itself. An operator \(S \in \mathcal{B}(\mathcal{H})\) we denote by \(\mathcal{N}(S)\) and \(\mathcal{R}(S)\) the null space and the range of \(S\) respectively. For \(S \in \mathcal{B}(\mathcal{H})\), we set

\[\theta_m(S) := \sum_{0 \leq j \leq m} (-1)^j \binom{m}{j} S^* S^j.\]

J. Agler and M. Stankus introduced the class of \textit{m}\text{-isometry on Hilbert space \([1, 2, 3]\). An operator \(S \in \mathcal{B}(\mathcal{H})\) is said to be \textit{m}\text{-isometric operator for some integer \(m \geq 1\) if it satisfies the operator equation \(\theta_m(S) = 0\).

Notice that the defining property \(\theta_m(S) = 0\) of an \textit{m}\text{-isometric operator is equivalently formulated that

\[\sum_{0 \leq k \leq m} (-1)^k \binom{m}{k} \|S^k x\|^2 = 0 \quad (\forall x \in \mathcal{H}).\]

The Concept of \textit{m}\text{-isometric operators on Hilbert and Banach spaces has attracted much attention of various authors (see \([8, 2, 10, 11, 12, 13, 17, 21, 22, 19]\). A generalization of \textit{m}\text{-isometries to \textit{m}\text{-expansive and \textit{m}\text{-contractive operators on Hilbert spaces spaces has been presented by several authors. We refer the reader to \([4, 5, 6, 7, 14, 15, 18, 20, 23]\) for recent articles about these subjects.

\textbf{Definition 1.1.} (\([14]\)) An operator \(S \in \mathcal{B}(\mathcal{H})\) is said to be

\begin{enumerate}[(i)]
 \item \textit{m}\text{-expansive \((m \geq 1)\) if } \theta_m(S) \leq 0.
\end{enumerate}
(ii) \(m \)-hyperexpensive \((m \geq 1) \), if \(\theta_k(S) \leq 0 \) for \(k = 1, 2, \ldots, m \).

(iii) Completely hyperexpansive if \(\theta_m(S) \leq 0 \) for all \(m \).

Definition 1.2. (15) An operator \(S \in \mathcal{B}(\mathcal{H}) \) is said to be

(i) \(m \)-contractive \((m \geq 1) \) if \(\theta_m(S) \geq 0 \).

(ii) \(m \)-hypercontractive \((m \geq 1) \), if \(\theta_k(S) \geq 0 \) for \(k = 1, 2, \ldots, m \).

(iii) Completely hypercontractive if \(\theta_m(S) \geq 0 \) for all \(m \).

The study of tuple of commuting operators on Hilbert space has consider by many authors in the recent years. In [16] the authors introduced the concept of \(m \)-isomeric tuple of commuting operators as follows: Let \(S = (S_1, \ldots, S_d) \in \mathcal{B}(\mathcal{H})^d \) be tuple of commuting operators. \(S \) is said to be \(m \)-isometric tuple if

\[
\sum_{0 \leq k \leq m} (-1)^k \left(\sum_{|\alpha|=k} \frac{k!}{\beta!} |S^\alpha S^\beta| \right) = 0,
\]

where \(\beta = (\beta_1, \ldots, \beta_d) \in \mathbb{Z}_+^d \) and \(\beta! = \beta_1! \cdots \beta_d! \).

2. MAIET RESULTS

In this section, we introduce and study the concepts on \(m \)-expansive and \(m \)-contractive tuples of operators on a Hilbert space.

Let \(S = (S_1, \ldots, S_d) \in \mathcal{B}(\mathcal{H})^d \) and set

\[
\Psi_l(S) = \sum_{0 \leq k \leq l} (-1)^k \left(\sum_{|\alpha|=k} \frac{k!}{\beta!} |S^\alpha S^\beta| \right),
\]

and

\[
Q_l(S, x) := \langle Sx, x \rangle = \sum_{0 \leq k \leq l} (-1)^k \binom{m}{k} \left(\sum_{|\alpha|=k} \frac{k!}{\beta!} |S^\alpha x|^2 \right).
\]

Clearly,

\[
\Psi_l(S) \geq 0 \iff Q_l(S, x) \geq 0 \quad \forall \ x \in \mathcal{H},
\]

and

\[
\Psi_l(S) \leq 0 \iff Q_l(S, x) \leq 0 \quad \forall \ x \in \mathcal{H},
\]

Definition 2.1. Let \(S = (S_1, \ldots, S_d) \in \mathcal{B}(\mathcal{H})^d \) be a commuting tuple of operators and \(m \in \mathbb{N} \). We said that

(1) \(S \) is joint \(m \)-expansive if \(\Psi_m(S) \leq 0 \) for some integer \(m \).

(2) \(S \) is joint \(m \)-hyperexpansive tuple if \(\Psi_k(S) \leq 0 \) for each \(k = 1, 2, \ldots, m \).

(3) \(S \) is joint completely hyperexpansive tuple if \(\Psi_k(S) \leq 0 \) for all \(k \in \mathbb{N} \).

(4) \(S \) is joint \(m \)-contractive if \(\Psi_m(S) \geq 0 \) for some integer \(m \).

(5) \(S \) is joint \(m \)-hypercontractive if \(\Psi_k(S) \geq 0 \) for each \(k = 1, 2, \ldots, m \).

(6) \(S \) is joint completely hypercontractive if \(S \) is joint \(k \)-contractive for all positive integer \(k \).
When $d = 1$, Definition 2.1 coincides with Definition 1.1 and Definition 1.2.

Remark. Observe that

$$
\langle \Psi_l(S)x, x \rangle = \sum_{0 \leq k \leq l} (-1)^k \left(\sum_{|\beta| = k} \frac{k!}{\beta!} \|S^\beta x\|^2 \right), \quad \forall \ x \in \mathcal{H}.
$$

Then:

(1) S is m-expansive tuple if and only if

$$
\sum_{0 \leq k \leq l} (-1)^k \left(\sum_{|\beta| = k} \frac{k!}{\beta!} \|S^\beta x\|^2 \right) \leq 0, \quad \forall \ x \in \mathcal{H},
$$

and

(2) S is m-contractive tuple if and only if

$$
\sum_{0 \leq k \leq l} (-1)^k \left(\sum_{|\beta| = k} \frac{k!}{\beta!} \|S^\beta x\|^2 \right) \geq 0, \quad \forall \ x \in \mathcal{H}.
$$

Remark. (i) Let $S = (S_1, \ldots, S_d) \in \mathcal{B}(\mathcal{H})^d$ be a commuting tuple of operators. Then S is a joint expansive tuple if

$$
\|x\|^2 \leq \sum_{1 \leq j \leq d} \|S_j x\|^2, \quad (\forall \ x \in \mathcal{H}) \quad (2.3)
$$

and it is a joint contractive tuple if

$$
\|x\|^2 \geq \sum_{1 \leq j \leq d} \|S_j x\|^2, \quad (\forall \ x \in \mathcal{H}). \quad (2.4)
$$

(ii) If $d = 2$, let $S = (S_1, S_2) \in \mathcal{B}(\mathcal{H})^2$ be a commuting pair of operators. Then S is a joint 2-expansive pair if

$$
\|x\|^2 \leq 2(\|S_1 x\|^2 + \|S_2 x\|^2) - (\|S_1^2 x\|^p + \|S_2^2 x\|^p + 2\|S_1 S_2 x\|^p) \quad (\forall \ x \in \mathcal{H}), \quad (2.5)
$$

and it is a joint $(2, p)$-contractive pair if

$$
\|x\|^p \geq 2(\|S_1 x\|^p + \|S_2 x\|^p) - (\|S_1^2 x\|^p + \|S_2^2 x\|^p + 2\|S_1 S_2 x\|^p) \quad (\forall \ x \in \mathcal{H}). \quad (2.6)
$$

(iii) Let $S = (S_1, \ldots, S_d) \in \mathcal{B}(\mathcal{H})^d$ be a commuting tuple of operators. Then S is a joint 2-expansive tuple if

$$
\|x\|^2 \leq 2 \sum_{1 \leq j \leq d} \|S_j x\|^2 - \left(\sum_{1 \leq j \leq d} \|S_j^2 x \|^2 + 2 \sum_{1 \leq j < k \leq d} \|S_j S_k x\|^2 \right) \quad \forall \ x \in \mathcal{H}, \quad (2.7)
$$

and it is a joint 2-contractive tuple if

$$
\|x\|^2 \geq 2 \sum_{1 \leq j \leq d} \|S_j x\|^2 - \left(\sum_{1 \leq j \leq d} \|S_j^2 x \|^p + 2 \sum_{1 \leq j < k \leq d} \|S_j S_k x\|^p \right) \quad \forall \ x \in \mathcal{H}. \quad (2.8)
$$

Remark. Since the operators S_1, \ldots, S_d are commuting, every permutation of joint m-expansive tuple is also joint m-expansive tuple.

The following examples show that there exists a joint (m, p)-expansive (resp. joint (m, p)-contractive) operator which is not (m, p)-isometric tuple for some positive integer m.

Example 2.2. Let $\mathcal{H} = \mathbb{C}^3$ be equipped with the norm

$$
\|(x, y, z)\|_2 = \left(|x|^2 + |y|^2 + |z|^2 \right)^{\frac{1}{2}}
$$
and consider
\[
S_1 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \in \mathcal{B}(\mathbb{C}^3) \text{ and } S_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \in \mathcal{B}(\mathbb{C}^3).
\]

Then the pair \(S = (S_1, S_2) \) is a joint 2-expansive pair on \((\mathcal{H} = \mathbb{C}^3, \| \cdot \|_2) \).

In fact, obviously \(S_1 S_2 = S_2 S_1 \) and a simple computation shows that
\[
2 \left\| S_1 \begin{pmatrix} u \\ v \\ w \end{pmatrix} \right\|_2^p + 2 \left\| S_2 \begin{pmatrix} u \\ v \\ w \end{pmatrix} \right\|_2^2 - \left(\left\| S_1^2 \begin{pmatrix} u \\ v \\ w \end{pmatrix} \right\|_2^2 + \left\| S_2^2 \begin{pmatrix} u \\ v \\ w \end{pmatrix} \right\|_2^2 + 2 \left\| S_1 S_2 \begin{pmatrix} u \\ v \\ w \end{pmatrix} \right\|_2^2 \right) = \left(9^2 - 1 + 3^2 \right) \left| u + v + w \right|^2
\]
\[
\geq \left\| \begin{pmatrix} u \\ v \\ w \end{pmatrix} \right\|_2^2.
\]

However \(S \) is not a 2-isometric tuple.

Proposition 2.1. Let \(S = (S_1, \ldots, S_d) \in \mathcal{B}(\mathcal{H})^d \) be a tuple of commuting operators. Then for all positive integer \(m \), and \(x \in \mathcal{H} \), we have
\[
Q_{m+1}(S, x) = Q_m(S, x) - \sum_{1 \leq k \leq n} Q_m(S, S_k x). \tag{2.9}
\]

Proof. By taking into account Equation (2.4), a straightforward calculation shows that
\[
Q_{m+1}(S, x) = \sum_{0 \leq k \leq m+1} (-1)^k \binom{m+1}{k} \sum_{|\beta| = k} \frac{k!}{\beta!} \| S^\beta x \|^2
\]
\[
= \| x \|^2 + \sum_{1 \leq k \leq m} (-1)^k \left(\binom{m}{k} + \binom{m}{k-1} \right) \sum_{|\beta| = k} \frac{k!}{\beta!} \| S^\beta x \|^2
\]
\[
+ (-1)^{m+1} \sum_{|\beta| = m+1} \frac{(m+1)!}{\beta!} \| S^\beta x \|^2
\]
\[
= Q_m(S, x) - \sum_{0 \leq k \leq m-1} (-1)^k \binom{m}{k} \sum_{|\beta| = k+1} \frac{(k+1)!}{\beta!} \| S^\beta x \|^2
\]
\[
+ (-1)^{m+1} \sum_{|\beta| = m+1} \frac{(m+1)!}{\beta!} \| S^\beta x \|^2
\]
\[
= Q_m(S, x) - \sum_{0 \leq k \leq m-1} (-1)^{m-k} \binom{m}{k} \sum_{|\beta| = k+1} \frac{k!(\beta_1 + \cdots + \beta_n)}{\beta_1! \cdots \beta_n!} \| S^\beta x \|^2
\]
\[
+ (-1)^{m+1} \sum_{|\beta| = m+1} \frac{m!(\beta_1 + \cdots + \beta_n)}{\beta_1! \cdots \beta_n!} \| S^\beta x \|^2.
\]
and so the equality (2.5) is satisfied.

\[\Box \]

Example 2.3. Let \(\mathcal{H} \) be an Hilbert space and \(I_\mathcal{H} \) the identity operator. Then \((5I_\mathcal{H}, I_\mathcal{H}, I_\mathcal{H}) \in \mathcal{B}(\mathcal{H})^3 \) is a joint 2-contractive of operators which is not a 2-isometric tuple.

It is well-known that the class of \(m \)-isometric tuple is a subset of the class of \((m + 1) \)-isometric tuple. The following example shows that the class of joint \(m \)-expansive tuple and joint \(m + 1 \)-expansive tuple are independent.

Example 2.4. Let \(\mathbf{S} = (I_\mathcal{H}, I_\mathcal{H}, I_\mathcal{H}) \in \mathcal{B}(\mathcal{H})^3 \). A simple computation shows that

1. \(\mathbf{S} \) is a joint 1-expansive tuple but not a joint 2-expansive tuple.
2. \(\mathbf{S} \) is a joint 2-contractive tuple but not a joint 1-contractive tuple.

The following theorem gives some sufficient conditions under which a joint \(m \)-expansive tuple of operators in Hilbert space is a joint \(m \)-hyperexpansive tuple for \(m \geq 2 \).

Theorem 2.2. Let \(\mathbf{S} = (S_1, \cdots, S_d) \in \mathcal{B}(\mathcal{H})^d \) be a commuting tuple of operators. If \(\mathbf{S} \) is a joint \(m \)-expansive tuple and satisfies the following conditions

1. \(S_j^k \to 0 \) strongly for all \(j \in \{1, \cdots, d\} \).
2. \(S_j^k \Psi_k(S)S_j \leq S_j^{2k} \Psi_k(S)S_j^2 \) for all \(j \in \{1, \cdots, d\} \) and \(k \in \{1, \cdots, m - 1\} \),

then \(\mathbf{S} \) is a joint \(m \)-hyperexpansive tuple.

Proof. As \(\mathbf{S} \) is a joint \(m \)-expansive tuple, it follows that

\[
\sum_{0 \leq k \leq m} (-1)^k \binom{m}{k} \left(\sum_{|\beta|=k} \frac{k!}{\beta_1! \beta_2! \cdots \beta_m!} \right) \leq 0.
\]
A computation shows that
\[
0 \geq I_H + \sum_{1 \leq k \leq m-1} (-1)^k \binom{m}{k} \left(\sum_{|\alpha|=k} \frac{k!}{\alpha!} S^\alpha S^\beta \right) + (-1)^m \sum_{|\beta|=m} \frac{m!}{\beta!} S^\beta S^\beta
\]
\[
= I_H + \sum_{1 \leq k \leq m-1} (-1)^k \binom{m-1}{k} \left(\frac{m-1}{k-1} \right) \sum_{|\alpha|=k} \frac{k!}{\alpha!} S^\alpha S^\beta + (-1)^m \sum_{|\beta|=m} \frac{m!}{\beta!} S^\beta S^\beta
\]
\[
= \sum_{0 \leq k \leq m-1} \left(-1 \right)^k \binom{m-1}{k} \sum_{|\beta|=k} \frac{k!}{\beta!} S^\beta S^\beta - \sum_{0 \leq k \leq m-2} \left(-1 \right)^k \binom{m-1}{k} \sum_{|\beta|=k+1} \frac{(k+1)!}{\beta!} S^\beta S^\beta
\]
\[
+ (-1)^m \sum_{|\beta|=m} \frac{m!}{\beta!} S^\beta S^\beta
\]
In view of the statement (2), we obtain
\[
\Psi_{m-1}(S) \leq \sum_{1 \leq j \leq d} S_j^* \left(\sum_{0 \leq k \leq m-1} \left(-1 \right)^k \binom{m-1}{k} \sum_{|\beta|=k} \frac{k!}{\beta!} S^\beta S^\beta \right) S_j
\]
\[
= \sum_{1 \leq j \leq d} S_j^* \Psi_{m-1}(S) S_j
\]
\[
\leq \sum_{1 \leq j \leq d} S_j^{2k} \Psi_{m-1}(S) S_j^2
\]
\[
\leq \cdots
\]
\[
\leq \sum_{1 \leq j \leq d} S_j^{k_1} \Psi_{m-1}(S) S_j^{k_1}
\]
for every \(k = (k_1, \cdots, k_d) \in \mathbb{Z}^d_+ \). By the assumption in the statement (1) it follows that \(\Psi_{m-1}(S) \leq 0 \). Repeating the process as above we can prove that
\[
\Psi_l(S) \leq 0 \quad \forall \ l \in \{1, 2, \cdots, m\}.
\]
This yields the conclusion that the operator \(S \) is a joint \(m \)-hyperexpansive tuple. \(\square \)

A similar argument to the one above proves the following theorem:

Theorem 2.3. Let \(S = (S_1, \cdots, S_d) \in \mathcal{B}(\mathcal{H})^d \) be a commuting tuple of operators. If \(S \) is a joint \(m \)-contractive tuple and satisfies the following conditions

1. \(S_j^{k_j} \to 0 \) strongly for all \(j \in \{1, \cdots, d\} \),
2. \(S_j^* \Psi_k(S) S_j \geq S_j^{2k} \Psi_k(S) S_j^2 \) for all \(j \in \{1, 2, \cdots, d\} \) and \(k \in \{1, \cdots, m-1\} \),

then \(T \) is \(m \)-hypercontractive tuple.

Proposition 2.4. Let \(S = (S_1, \cdots, S_d) \in \mathcal{B}(\mathcal{H})^d \) be commuting tuple of operators such that \(S = (S_1/\|S_1\|, \cdots, S_d/\|S_d\|) \) is a joint 1-isometric tuple. The following properties hold.

1. If \(S \) is joint \(m \)-expansive tuple, then \(S \) is \(m \)-hyperexpansive tuple.
2. If \(S \) is joint \(m \)-contractive tuple, then \(S \) is a joint \(m \)-hypercontractive tuple.
Proof. By (2.9) we have for all \(k \in \{1, 2, \cdots, m\} \)
\[
Q_k(S, x) = Q_{k-1}(S, x) - \sum_{1 \leq j \leq d} Q_{k-1}(S_j, x), \quad \forall \ x \in \mathcal{H}.
\]

If \(S \) is a joint isometric tuple on \(\mathcal{R}(S) \), it is well known that \(S \) is an \(k \)-isometric tuple on \(\mathcal{R}(S) \) for \(k = 1, \cdots, m \). Consequently,
\[
Q_1(S, x) = Q_2(S, x) = \cdots = Q_{m-1}(S, x) = Q_m(S, x) = 0.
\]

If \(S \) is a joint \(m \)-expansive tuple, then it is a joint \((m-1)\)-expansive tuple. By repeating this process we get obtain that \(S \) is joint \(k \)-expansive tuple for \(k = 1, 2 \cdots, m \). Consequently, \(S \) is joint \(m \)-hyperexpansive.

By the same argument as above, (2) is obtained. \(\Box \)

A point \(\mu = (\mu_1, \cdots, \mu_d) \in \mathbb{C}^d \) is said to be a joint approximate point of \(S = (S_1, \cdots, S_d) \) if there exists a unit sequence of vectors \((\xi_n)_n \subset \mathcal{H} \) such that
\[
\lim_{n \to \infty} \| (S_j - \mu_j)\xi_n \| = 0 \quad \text{for} \quad j = 1, \cdots, d.
\]
The joint approximate point spectrum of \(S \), denoted by \(\sigma_{ap}(S) \) is defined by
\[
\sigma_{ap}(S) := \{ \mu = (\mu_1, \cdots, \mu_d) \in \mathbb{C}^d / \mu \text{ is a joint approximate point spectrum of } S \}.
\]

We denote by
\[
\mathcal{B}(\mathbb{C}^d) := \{ \mu = (\mu_1, \cdots, \mu_d) \in \mathbb{C}^d / \| \mu \|_2 = \left(\sum_{1 \leq j \leq d} |\mu_j|^2 \right)^{\frac{1}{2}} < 1 \}
\]
and
\[
\partial \mathcal{B}(\mathbb{C}^d) := \{ \mu = (\mu_1, \cdots, \mu_d) \in \mathbb{C}^d / \| \mu \|_2 = \left(\sum_{1 \leq j \leq d} |\mu_j|^2 \right)^{\frac{1}{2}} = 1 \}.
\]

Proposition 2.5. Let \(S = (S_1, \cdots, S_d) \in \mathcal{B}(\mathcal{H})^d \) be an \(m \)-expansive tuple for some positive integer \(m \). The following properties hold.

1. If \(m \) is even, then the approximate point spectrum of \(S \) lies in the boundary of the unit ball of \((\mathbb{C}^d, \| \cdot \|_2) \).
2. If \(m \) is odd, then \(\sigma_{ap}(S) \subset \mathbb{C}^d \setminus \mathcal{B}(\mathbb{C}^d) \) and \(\mathcal{N}(S) := \bigcap_{1 \leq j \leq d} \mathcal{N}(S_j) = \{0\} \).

Proof. Let \(\mu = (\mu_1, \cdots, \mu_d) \in \mathbb{C}^d \) is in the approximate point spectrum of \(S \), then there exists a sequence \((\xi_n)_n \subset \mathcal{X} \) such that for all \(n \), \(\| \xi_n \| = 1 \) and \(\|(S_j - \mu_j)\xi_n\| \to 0 \) as \(n \to +\infty \). Thus for each integer \(\beta_j \in \mathbb{N} \), \(\lim_{n \to +\infty} \|(S_j^\beta - \mu_j^\beta)\xi_n\| = 0 \) and so that
\[
\lim_{n \to +\infty} \|(S_j^\beta - \mu_j^\beta)\xi_n\| = 0 \quad \forall \ \beta = (\beta_1, \cdots, \beta_d) \in \mathbb{Z}_+^d.
\]

Now it is easy to see that
\[
\|S^\beta \xi_n\|^2 \to |\mu|^{2\beta} \quad \text{as} \quad n \to \infty.
\]
Since S is an (m,p)-expansive, it follows that
\[0 \geq \sum_{0 \leq k \leq m} (-1)^k \binom{m}{k} \left(\sum_{|\alpha| = k} \frac{k!}{\alpha!} \| (S)^{\alpha} \xi_n \|^2 \right) \]
By taking $n \to \infty$ in the last inequality, we obtain
\[0 \geq \sum_{0 \leq k \leq m} (-1)^k \binom{m}{k} \sum_{|\alpha| = k} \frac{k!}{\alpha!} |\mu|^{2k} \]
\[\geq \sum_{0 \leq k \leq m} (-1)^k \binom{m}{k} \sum_{|\beta| = k} \frac{k!}{\beta!} |\mu|^{2k} \]
\[\geq \left(1 - \|\mu\|_2^2 \right)^m. \]
So,
\[(1 - \|\mu\|_p^p)^m \leq 0 \] \hspace{1cm} (2.10)
Now, we have that
(1) If m is even, then $0 \leq (1 - \|\mu\|_p^p)^m \leq 0$ from (2.10), and so $\|\mu\|_2 = 1$. Thus means that $\sigma_{ap}(S) \subset \partial B(C^d)$ and so
\[\partial \sigma(S) \subset \sigma_{ap}(S) \subset \partial B(C^d). \]
(2) Assume that m is odd. If $\|\mu\|_2 < 1$, then $0 < (1 - \|\mu\|_2^2)^m \leq 0$ from (2.10), which is a contradiction. Hence,
\[\sigma_{ap}(S) \subset C^d \setminus \mathbb{B}(C^d). \]
In particular, $(0, \cdots, 0) \notin \sigma_{ap}(S)$. Thus $\mathcal{N}(S) = \{0\}. \quad \Box$

REFERENCES

ON m-EXPANSIVE AND m-CONTRACTIVE TUPLE OF OPERATORS IN HILBERT SPACES

NAEEM AHMAD
MATHEMATICS DEPARTMENT, COLLEGE OF SCIENCE, JOUF UNIVERSITY, SAKAKA P.O.BOX 2014, SAUDI ARABIA

Email address: naataullah@ju.edu.sa, nahmadamu@gmail.com