A NEW FORM OF GENERALIZED m-PF IDEALS IN BCK/BCI-ALGEBRAS

ANAS AL-MASARWAH * AND ABD GHAFUR AHMAD

ABSTRACT. In this paper, we introduce a new kind of an m-polar fuzzy ideal of a BCK/BCI-algebra called, an m-polar \((\in, \in \lor q)\) fuzzy ideal and investigate some of its properties. Ordinary ideals and m-polar \((\in, \in \lor q)\) fuzzy ideals are connected by means of level cut subset.

1. INTRODUCTION

BCK-algebras entered into mathematics in 1966 through the work of Imai and Iséki [12], and they have been applied to several domains of mathematics, such as group theory, topology, functional analysis and probability theory. Additionally, Iséki [13] initiated the idea of a BCI-algebra, which is a generalization of a BCK-algebra.

The idea of fuzzy sets was introduced by Zadeh [20] in 1965 to handle uncertainties in several real applications, and the idea of bipolar fuzzy sets on a universe \(X\) was introduced by Zhang [21] in 1994 as a generalization of fuzzy sets. The notion of m-polar fuzzy sets was presented by Chen et al. [9] in 2014 as an extension of bipolar fuzzy sets. Bipolar fuzzy sets, m-polar fuzzy (m-PF) sets and several hybrid models of fuzzy sets play a prominent rule in several algebraic structures, such as BCK/BCI-algebras [3, 7, 4, 6, 18, 16, 17], hemirings [11], groups [10] and lie-subalgebras [12]. In 1971, Rosenfeld [19] applied fuzzy sets to groups and proposed the concept of fuzzy subgroups. As a generalization of fuzzy subgroups, Bhakat and Das [8] initiated the notions of \((\in, \in \lor q)\)-fuzzy subgroups by using the concept of fuzzy points and its “belongingness (\(\in\))” and “quasi-coincidence (\(q\))” with a fuzzy set. Jun [15] introduced a generalization of fuzzy ideals in BCK/BCI-algebras, called \((\alpha, \beta)\)-fuzzy ideals. After that, Jana et al. [14] proposed the concept of \((\in, \in \lor q)\)-bipolar fuzzy ideals in BCK/BCI-algebras. Further, Al-Masarwah and Ahmad [5] presented the notion of m-polar \((\in, \in \lor q)\)-fuzzy ideals in BCK/BCI-algebras as a generalization of m-polar fuzzy ideals.

This paper is a continuation of papers [4] and [5]. We introduce the notion of m-polar \((\in, \in \lor q)\) fuzzy ideals and investigate some of its properties. We discuss the relation between ordinary ideals and m-polar \((\in, \in \lor q)\) fuzzy ideals in BCK/BCI-algebras.

2010 Mathematics Subject Classification. 06F35, 03G25, 03B52, 03B05.
Key words and phrases. BCK/BCI-algebra; m-polar fuzzy ideal; m-polar \((\in, \in \lor q)\) fuzzy ideal.
*Corresponding author.
2. Preliminaries

Some of the significant notions pertaining to BCK/BCI-algebras, m-PF sets, m-PF points and m-PF ideals that are useful for subsequent discussions are stated below. In what follows, let X be a BCK/BCI-algebra unless otherwise specified.

By a BCI-algebra, we mean an algebra $(X; *, 0)$ of type $(2, 0)$ satisfying the following axioms for all $x, y, z \in X$:

1. $(x * y) * (x * z) * (z * y) = 0$,
2. $(x * (x * y)) * y = 0$,
3. $x * x = 0$,
4. $x * y = 0$ and $y * x = 0$ imply $x = y$.

If a BCI-algebra X satisfies $0 * x = 0 \forall x \in X$, then X is called a BCK-algebra. A partial ordering \leq on a BCK/BCI-algebra X can be defined by $x \leq y$ if and only if $x * y = 0$. Any BCK/BCI-algebra X satisfies the following axioms for all $x, y, z \in X$:

1. $x * 0 = x$,
2. $(x * y) * z = (x * z) * y$.

A non-empty subset J of X is said to be an ideal of X if for all $x, y \in X$:

1. $0 \in J$,
2. $x * y \in J$ and $y \in J$ imply $x \in J$.

Definition 2.1 ([9]). An m-PF set \widehat{H} on $X(\neq \emptyset)$ is a function $\widehat{H} : X \to [0, 1]^m$, where

$$\widehat{H}(x) = (p_1 \circ \widehat{H}(x), p_2 \circ \widehat{H}(x), ..., p_m \circ \widehat{H}(x))$$

is the membership value of every element $x \in X$ and $p_i \circ \widehat{H} : [0, 1]^m \to [0, 1]$ is the i-th projection mapping for all $i = 1, 2, ..., m$. The values $\widehat{0} = (0, 0, ..., 0)$ and $\widehat{1} = (1, 1, ..., 1)$ are the smallest and largest values in $[0, 1]^m$, respectively.

Definition 2.2 ([3]). An m-PF set \widehat{H} of X is said to be an m-PF ideal if the assertions below are valid: for all $x, y \in X$,

1. $\widehat{H}(0) \geq \widehat{H}(x)$,
2. $\widehat{H}(x) \geq \inf\{\widehat{H}(x * y), \widehat{H}(y)\}$.

That is,

1. $p_i \circ \widehat{H}(0) \geq p_i \circ \widehat{H}(x)$,
2. $p_i \circ \widehat{H}(x) \geq \inf\{p_i \circ \widehat{H}(x * y), p_i \circ \widehat{H}(y)\}$

for all $i = 1, 2, ..., m$.

Definition 2.3 ([3]). Let \widehat{H} be an m-PF set of X. Then, the set

$$\widehat{H}_t = \{x \in X \mid \widehat{H}(x) \geq \widehat{t}\}$$

is called the level cut subset of \widehat{H} for all $\widehat{t} \in (0, 1]^m$.

An m-PF set \widehat{H} of X of the form

$$\widehat{H}(y) = \begin{cases} \widehat{t} = (t_1, t_2, ..., t_m) \in (0, 1]^m, & \text{if } y = x \\ \widehat{0} = (0, 0, ..., 0), & \text{if } y \neq x \end{cases}$$

is called an m-PF point, denoted by $x_{\widehat{t}}$, with support x and value $(t_1, t_2, ..., t_m) = \widehat{t}$.

An m-PF point $x_{\widehat{t}}$

1. Belongs to \widehat{H}, denoted by $x_{\widehat{t}} \in \widehat{H}$, if $\widehat{H}(x) \geq \widehat{t}$ i.e., $p_i \circ \widehat{H}(x) \geq t_i$ for each $i = 1, 2, ..., m$.

(2) Is quasi-coincident with \(\hat{H} \), denoted by \(x \triangleleft q \hat{H} \), if \(\hat{H}(x) + \hat{t} > \hat{1} \) i.e., \(p_{i} \circ \hat{H}(x) + t_{i} > \hat{1} \) for each \(i = 1, 2, \ldots, m \).

We say that

1. \(x \triangleright \alpha \hat{H} \) if \(x \triangleright \alpha \hat{H} \) does not hold,
2. \(x \in \triangledown q \hat{H} \) if \(x \in \hat{H} \) or \(x \triangleleft q \hat{H} \),
3. \(x \in \wedge q \hat{H} \) if \(x \in \hat{H} \) and \(x \triangleleft q \hat{H} \).

Definition 2.4. An \(m \)-PF set \(\hat{H} \) of \(X \) is called an \(m \)-polar \((\varepsilon, \in \triangledown q)\)-fuzzy ideal of \(X \) if the assertions below are valid: for all \(x, y \in X \) and \(\hat{t}, \hat{s} \in (0, 1)^{m} \),

1. \(x \triangleright \hat{t} \in \hat{H} \) implies \(0 \triangleright \hat{t} \in \triangledown q \hat{H} \),
2. \((x \ast y) \triangleright \hat{t} \in \hat{H} \) and \(y \triangleright \hat{s} \in \hat{H} \) imply \(x_{\inf(\hat{t}, \hat{s})} \in \triangledown q \hat{H} \).

3. \(m \)-POLAR \((\varepsilon, \varepsilon \triangledown q)\)-FUZZY IDEALS

In this section, we define \(m \)-polar \((\varepsilon, \varepsilon \triangledown q)\)-fuzzy ideals of \(X \) and discuss several results.

Definition 3.1. An \(m \)-PF set \(\hat{H} \) of \(X \) is called an \(m \)-polar \((\varepsilon, \varepsilon \triangledown q)\)-fuzzy ideal of \(X \) if the assertions below are valid: for all \(x, y \in X \) and \(\hat{t}, \hat{s} \in (0, 1)^{m} \),

1. \(0 \triangleright \varepsilon \hat{H} \) implies \(x \triangleright \varepsilon \hat{H} \),
2. \(x_{\inf(\hat{t}, \hat{s})} \triangleright \varepsilon \hat{H} \) implies \((x \ast y) \triangleright \varepsilon \hat{H} \) or \(y \triangleright \varepsilon \hat{H} \).

Example 3.2. Consider a \(BCK \)-algebra \(X = \{0, a, b, c, d\} \) which is defined in Table 1.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>a</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>d</td>
<td>c</td>
<td>b</td>
<td>a</td>
</tr>
</tbody>
</table>

Let \(\hat{H} \) be a 3-PF set defined as:

\[
\hat{H}(x) = \begin{cases}
(0.91, 0.91, 0.97), & \text{if } x = 0 \\
(0.37, 0.37, 0.78), & \text{if } x = a \\
(0.50, 0.50, 0.50), & \text{if } x = b \\
(0.44, 0.44, 0.49), & \text{if } x = c \\
(0.25, 0.25, 0.28), & \text{if } x = d.
\end{cases}
\]

Clearly, \(\hat{H} \) is a 3-polar \((\varepsilon, \varepsilon \triangledown q)\)-fuzzy ideal of \(X \).

Theorem 3.1. An \(m \)-PF set \(\hat{H} \) of \(X \) is an \(m \)-polar \((\varepsilon, \varepsilon \triangledown q)\)-fuzzy ideal of \(X \) if and only if for all \(x, y \in X \):

(i) \(\sup\{\hat{H}(0), 0.5\} \geq \hat{H}(x) \),
(ii) \(\sup\{\hat{H}(x), 0.5\} \geq \inf\{\hat{H}(x \ast y), \hat{H}(y)\} \).

Proof. Let \(\hat{H} \) be an \(m \)-polar \((\varepsilon, \varepsilon \triangledown q)\)-fuzzy ideal of \(X \). Suppose there exists \(x \in X \) such that \(\sup\{\hat{H}(0), 0.5\} < \hat{t} = \hat{H}(x) \). Then,
\hat{t} \in (0.5, 1]^{m}, 0_{1, \mathcal{H}}, \text{ and } x_{\hat{t}} \in \hat{\mathcal{H}}.

By Definition 3.1 (1), we have \(x_{\hat{t}} \hat{\in} \mathcal{H}, \) i.e., \(\hat{\mathcal{H}}(x) < \hat{t} \) or \(\hat{\mathcal{H}}(x) + \hat{t} \leq \hat{1} \). Since \(\hat{\mathcal{H}}(x) = \hat{t} \), therefore \(\hat{t} \leq 0.5 \). This is a contradiction. Hence, \(\sup \{ \hat{\mathcal{H}}(0), 0.5 \} \geq \hat{\mathcal{H}}(x) \) for all \(x \in X \).

Suppose there exist \(x, y \in X \) such that \(\sup \{ \hat{\mathcal{H}}(x), 0.5 \} < \hat{t} = \inf \{ \hat{\mathcal{H}}(x+y), \hat{\mathcal{H}}(y) \} \). Then,

\[\hat{t} \in (0.5, 1]^{m}, x_{\hat{t}} \in \hat{\mathcal{H}} \text{ and } (x \ast y)_{\hat{\mathcal{H}}} \in \hat{\mathcal{H}}. \]

It follows that \((x \ast y)_{\mathcal{H}} \) or \(y_{\mathcal{H}} \). Then, \(\hat{\mathcal{H}}(x+y) + \hat{t} \leq \hat{1} \) or \(\hat{\mathcal{H}}(y) + \hat{t} \leq \hat{1} \). Since \(\hat{\mathcal{H}}(x+y) \geq \hat{t} \) and \(\hat{\mathcal{H}}(y) \geq \hat{t} \), it follows that \(\hat{t} \leq 0.5 \), a contradiction. Hence, \(\sup \{ \hat{\mathcal{H}}(x), 0.5 \} \geq \inf \{ \hat{\mathcal{H}}(x \ast y), \hat{\mathcal{H}}(y) \} \) for all \(x, y \in X \).

Conversely, let \(0_{1} \in \mathcal{H} \). Then, \(\hat{\mathcal{H}}(0) < \hat{t} \), either \(\hat{\mathcal{H}}(0) \geq \hat{\mathcal{H}}(x) \) or \(\hat{\mathcal{H}}(0) < \hat{\mathcal{H}}(x) \). If \(\hat{\mathcal{H}}(0) \geq \hat{\mathcal{H}}(x) \), then \(\hat{\mathcal{H}}(x) < \hat{t} \), and so \(x_{\hat{t}} \in \hat{\mathcal{H}}. \) That is, \(x_{\hat{t}} \in \mathcal{H} \). If \(\hat{\mathcal{H}}(0) < \hat{\mathcal{H}}(x) \), then by (i), \(\hat{\mathcal{H}}(x) \leq 0.5 \). We consider two cases:

Case (1). If \(\hat{\mathcal{H}}(x) < \hat{t} \), then \(x_{\hat{t}} \in \mathcal{H} \), and so \(x_{\hat{t}} \in \mathcal{H} \) or \(y_{\mathcal{H}} \).

Case (2). If \(\hat{\mathcal{H}}(x) \geq \hat{t} \), then \(\hat{t} \leq \hat{\mathcal{H}}(x) \leq 0.5 \), it follows that \(x_{\hat{t}} \in \mathcal{H} \), and so \(x_{\hat{t}} \in \mathcal{H} \) or \(y_{\mathcal{H}} \).

Again, let \(x_{\inf \{ \hat{t}, \hat{s} \}} \in \mathcal{H} \) for \(\hat{t}, \hat{s} \in [0, 1] \). Then, \(\hat{\mathcal{H}}(x) < \inf \{ \hat{t}, \hat{s} \} \). We consider two cases:

Case (1). If \(\hat{\mathcal{H}}(x) \geq 0.5 \), then

\[\inf \{ \hat{\mathcal{H}}(x \ast y), \hat{\mathcal{H}}(y) \} \leq \hat{\mathcal{H}}(x) \leq \inf \{ \hat{t}, \hat{s} \}. \]

Consequently, \(\hat{\mathcal{H}}(x \ast y) < \hat{t} \) or \(\hat{\mathcal{H}}(y) < \hat{s} \). That is, \((x \ast y)_{\hat{\mathcal{H}}} \in \mathcal{H} \) or \(y_{\mathcal{H}} \). Hence, \((x \ast y)_{\hat{\mathcal{H}}} \in \mathcal{H} \) or \(y_{\mathcal{H}} \).

Case (2). If \(\hat{\mathcal{H}}(x) < 0.5 \), then

\[\inf \{ \hat{\mathcal{H}}(x \ast y), \hat{\mathcal{H}}(y) \} \leq 0.5. \]

Assume \((x \ast y)_{\hat{t}} \in \mathcal{H} \) or \(y_{\hat{t}} \in \mathcal{H} \). Then, \(\hat{t} \leq \hat{\mathcal{H}}(x \ast y) \leq 0.5 \) or \(\hat{t} \leq \hat{\mathcal{H}}(y) \leq 0.5 \). Thus, \(\hat{\mathcal{H}}(x \ast y) + \hat{t} \leq 0.5 + 0.5 = \hat{1} \) or \(\hat{\mathcal{H}}(y) + \hat{t} \leq 0.5 + 0.5 = \hat{1} \). It follows that \((x \ast y)_{\mathcal{H}} \) or \(y_{\mathcal{H}} \) and so \((x \ast y)_{\hat{\mathcal{H}}} \in \mathcal{H} \) or \(y_{\mathcal{H}} \). Hence, \(\mathcal{H} \) is an \(m \)-polar \((\mathcal{E}, \mathcal{E} \vee \mathcal{Q})\)-fuzzy ideal of \(X \).

Theorem 3.2. Any \(m \)-polar \((\mathcal{E}, \mathcal{E} \vee \mathcal{Q})\)-fuzzy ideal \(\hat{\mathcal{H}} \) of \(X \) satisfies: for all \(x, y \in X \),

1. \(x \leq y \Rightarrow \sup \{ \hat{\mathcal{H}}(x), 0.5 \} \geq \hat{\mathcal{H}}(y) \),
2. \(x \ast y \leq z \Rightarrow \sup \{ \hat{\mathcal{H}}(x), 0.5 \} \geq \inf \{ \hat{\mathcal{H}}(y), \hat{\mathcal{H}}(z) \} \).

Proof. (1) Suppose that \(x \leq y \) for all \(x, y \in X \). Then, \(x \ast y = 0 \). We have

\[\sup \{ \hat{\mathcal{H}}(x), 0.5 \} \geq \inf \{ \hat{\mathcal{H}}(x \ast y), \hat{\mathcal{H}}(y) \} = \inf \{ \hat{\mathcal{H}}(0), \hat{\mathcal{H}}(y) \} \geq \hat{\mathcal{H}}(y). \]

(2) Assume that \(x \ast y \leq z \) hold in \(X \). Then,

\[\sup \{ \hat{\mathcal{H}}(x \ast y), 0.5 \} \geq \inf \{ \hat{\mathcal{H}}((x \ast y) \ast z), \hat{\mathcal{H}}(z) \} = \inf \{ \hat{\mathcal{H}}(0), \hat{\mathcal{H}}(z) \} \geq \hat{\mathcal{H}}(z). \]

Since \(\mathcal{H} \) is an \(m \)-polar \((\mathcal{E}, \mathcal{E} \vee \mathcal{Q})\)-fuzzy ideal of \(X \), we have

\[\sup \{ \hat{\mathcal{H}}(x), 0.5 \} \geq \inf \{ \hat{\mathcal{H}}(x \ast y), \hat{\mathcal{H}}(y) \}. \]
Now,
\[
\begin{align*}
\sup\{\hat{H}(x), 0.5\} & \geq \sup\{\hat{H}(x \ast y), 0.5\} \\
\sup\{\hat{H}(x), 0.5\} & \geq \inf\{\sup\{\hat{H}(x \ast y), 0.5\}, \sup\{\hat{H}(y), 0.5\}\} \\
& \geq \inf\{\hat{H}(x \ast y), \hat{H}(y)\} \\
& = \inf\{\hat{H}(y), \hat{H}(z)\}.
\end{align*}
\]

\[\square\]

Theorem 3.3. An m-PF set \(\hat{H}\) of \(X\) is an m-polar \((\overline{\tau}, \overline{\tau} \lor \overline{\eta})\)-fuzzy ideal of \(X\) if and only if \(\hat{H}_\ell \neq \phi\) is an ideal of \(X\) for all \(\ell \in (0.5, 1]^m\).

Proof. Assume that \(\hat{H}\) is an m-polar \((\overline{\tau}, \overline{\tau} \lor \overline{\eta})\)-fuzzy ideal of \(X\) and \(\hat{t} \in (0.5, 1]^m\). Suppose \(x \in \hat{H}_\ell\). Then, \(\hat{H}(x) \geq \hat{t}\). Now,
\[
\sup\{\hat{H}(0), 0.5\} \geq \hat{H}(x) \geq \hat{t}.
\]
Thus, \(\hat{H}(0) \geq \hat{t}\). Hence, \(0 \in \hat{H}_\ell\). Let \(x \ast y, y \in \hat{H}_\ell\). Then, \(\hat{H}(x \ast y) \geq \hat{t}\) and \(\hat{H}(y) \geq \hat{t}\). Now,
\[
\sup\{\hat{H}(x), 0.5\} \geq \inf\{\hat{H}(x \ast y), \hat{H}(y)\} \geq \hat{t}.
\]
Thus, \(\hat{H}(x) \geq \hat{t}\), that is, \(x \in \hat{H}_\ell\). Therefore, \(\hat{H}_\ell\) is an ideal of \(X\).

Conversely, assume \(\hat{H}_\ell \neq \phi\) is an ideal of \(X\). Let \(x \in X\) be such that \(\sup\{\hat{H}(0), 0.5\} < \hat{H}(x)\). Choose \(\hat{\ell} \in (0.5, 1]^m\) such that
\[
\sup\{\hat{H}(0), 0.5\} < \hat{\ell} \leq \hat{H}(x).
\]
Then, \(\hat{H}(x) < \hat{\ell}\) and \(x \in \hat{H}_\ell\). Since \(\hat{H}_\ell\) is an ideal of \(X\), we have \(0 \in \hat{H}_\ell\), and so \(\hat{H}(0) \geq \hat{\ell}\), a contradiction. Hence, \(\sup\{\hat{H}(0), 0.5\} \geq \hat{H}(x)\) for all \(x \in X\). Assume \(x, y \in X\) such that \(\sup\{\hat{H}(x), 0.5\} < \inf\{\hat{H}(x \ast y), \hat{H}(y)\}\). Choose \(\hat{t} \in (0.5, 1]^m\) such that
\[
\sup\{\hat{H}(x), 0.5\} < \hat{t} \leq \inf\{\hat{H}(x \ast y), \hat{H}(y)\}.
\]
Then, \(\hat{H}(x) < \hat{t}\). Since \(x \ast y, y \in \hat{H}_\ell\) and \(\hat{H}_\ell\) is an ideal of \(X\), so \(x \in \hat{H}_\ell\). That is, \(\hat{H}(x) \geq \hat{t}\). This is a contradiction. Thus, \(\sup\{\hat{H}(x), 0.5\} \geq \inf\{\hat{H}(x \ast y), \hat{H}(y)\}\) for all \(x, y \in X\). Hence, \(\hat{H}\) is an m-polar \((\overline{\tau}, \overline{\tau} \lor \overline{\eta})\)-fuzzy ideal of \(X\). \[\square\]

4. **Conclusions**

In this work, first we have introduced the notion of m-polar \((\overline{\tau}, \overline{\tau} \lor \overline{\eta})\) fuzzy ideals and investigated some of its properties. Then, we have discussed the relation between ordinary ideals and m-polar \((\overline{\tau}, \overline{\tau} \lor \overline{\eta})\) fuzzy ideals in BCK/BCI-algebras.

References

ANAS AL-MASARWAH

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
Email address: almasarwah85@gmail.com

ABD GHAFUR AHMAD

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
Email address: ghafur@ukm.edu.my